Advertisement

RES Structure and Function of the Amphibia

  • Margaret J. Manning
  • John D. Horton

Abstract

The reticuloendothelial system of Aschoff comprises those phagocytic cells which take up carbon and dyes after these have been introduced into the animal (Clark, 1965). Both morphologically and functionally, this system is so intimately related to lymphoid cells and to the immune response that it would be unrealistic to consider one without the other. Furthermore, in amphibians, myeloid and lymphoid tissue occur along with macrophages and other reticuloendothelial cells, in close relationship within the same organs, the spatial separation between myelopoiesis and lymphopoiesis being less distinct in poikilotherms than in mammals (Yoffey, 1960). The organs concerned with these functions in the Amphibia are listed in Table 1. In this chapter we shall consider the structure and function of these organs.

Keywords

Xenopus Laevis Lymphoid Organ White Pulp Mixed Lymphocyte Culture Leopard Frog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosius, H., and Drössier, K., 1972, Spezifische zellvermittelte Immunität bei Froschlurchen. I. Quantitative Nachweistechnik mit dem Makrophagen—Migrations—Hemmtest für Peritoneal exsudat zellen und Milzstücken, Acta Biol. Med. Ger. 29:437.Google Scholar
  2. Ambrosius, H., and Hanstein, R., 1971, Beiträge zur Immunbiologie poikilothermer Wirbeltiere. VI. Die Dynamik Antikörper produzierender Zellen in den lymphoiden Organen des Wasser frosches Rana esculenta L., Acta Biol. Med. Ger. 27:771.PubMedGoogle Scholar
  3. Amirante, G. A., 1968, Induction of antibodies against pure proteins in Xenopus laevis Daud., Experientia 24:171.PubMedCrossRefGoogle Scholar
  4. Andrew, W., 1969, The nature of pigment cells in the liver of Ambystoma mexicanum and their changes with age, J. Cell Biol. 43:7.Google Scholar
  5. Auerbach, R., and Ruben, L. N., 1970, Studies of antibody formation in Xenopus laevis, J. Immunol. 104:1242.PubMedGoogle Scholar
  6. Azzolina, L. S., 1975, A primary immune response of Bufo marinus spleen cells in vitro. Eur. J. Immunol. 5:795.PubMedCrossRefGoogle Scholar
  7. Baculi, B. S., and Cooper, E. L., 1967, Lymphomyeloid organs of Amphibia. II. Vasculature in larval and adult Rana catesbeiana, J. Morphol. 123:463.PubMedCrossRefGoogle Scholar
  8. Baculi, B. S., and Cooper, E. L., 1968, Lymphomyeloid organs of Amphibia. IV. Normal histology in larval and adult Rana catesbeiana, J. Morphol. 126:463.CrossRefGoogle Scholar
  9. Baculi, B. S., Cooper, E. L., and Brown, B. A., 1970, Lymphomyeloid organs of Amphibia. V. Comparative histology in diverse anuran species, J. Morphol. 131:315.CrossRefGoogle Scholar
  10. Baldwin, T. M., 1918, Pharyngeal derivatives of Ambystoma, J. Morphol. 30:605.CrossRefGoogle Scholar
  11. Baldwin, W. M. III, and Cohen, N., 1981, A primitive dendritic splenocyte in Xenopus laevis with morphological similarities to Reed-Sternberg cells, in: Aspects of Developmental and Comparative Immunology I (J. B. Solomon, ed.), pp. 179–182, Pergamon Press, Oxford.Google Scholar
  12. Balls, M., Clothier, R., Hodgson, R., and Berridge, D., 1980, Effects of N-methyl-N-nitrosurea and cyclosporin A on the lymphocytes and immune responses of Xenopus laevis and other amphibians, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 183–184, Elsevier/North-Holland, Amsterdam.Google Scholar
  13. Barrett, W. C., Jr., 1936, A comparative survey of the hemopoietic foci in the urodele Amphibia, with especial reference to the bone marrow of the Plethodontidae, Folia Haematol. (Leipzig) 54:165.Google Scholar
  14. Bleicher, P. A., and Cohen, N., 1981, Monoclonal anti-IgM can separate T cell from B cell proliferative responses in the frog, Xenopus laevis, J. Immunol. 127:1549.PubMedGoogle Scholar
  15. Blomberg, B., Bernard, C. C. A., and Du Pasquier, L., 1980, In vitro evidence for T-B lymphocyte collaboration in the clawed toad, Xenopus laevis, Eur. J. Immunol. 10:869.PubMedCrossRefGoogle Scholar
  16. Brown, B. A., and Cooper, E. L., 1976, Immunological dichotomy in the larval bullfrog spleen, Immunology 30:299.PubMedGoogle Scholar
  17. Brown, B. A., Wright, R. K., and Cooper, E. L., 1975, Lymphoid organs and amphibian immunity, in: Immunologic Phytogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 267–275, Plenum Press, New York.Google Scholar
  18. Campbell, F. R., 1970, Ultrastructure of the bone marrow of the frog, Am. J. Anat. 129:329.PubMedCrossRefGoogle Scholar
  19. Canaday, S. D., 1968, Light and electron microscopy of the thymus in adult Rana pipiens, Anat. Rec. 160:326.Google Scholar
  20. Carver, F. J., and Meints, R. H., 1977, Studies of development of frog haemopoietic tissue in vitro. 1. Spleen culture assay of an erythropoietic factor in anaemic frog blood, J. Exp. Zool. 201:37.PubMedCrossRefGoogle Scholar
  21. Charlemagne, J., 1972a, Les réactions immunitaires chez les amphibiens urodèles. I. Resultats acquis et possibilités expérimentales, in: Phylogenic and Ontogenic Study of the Immune Response and Its Contribution to the Immunological Theory, Colloque Inserm, pp. 89–95, Ministry of Public Health, Paris.Google Scholar
  22. Charlemagne, J., 1972b, Aspects morphologiques de la différenciation des éléments sanguins chez l’Axoltol, Ambystoma mexicanum Shaw, Z. Zellforsch. Mikrosk, Anat. 123:224.CrossRefGoogle Scholar
  23. Charlemagne, J., 1974, Larval thymectomy and transplantation immunity in the urodele Pleurodeles waltlii Michah (Salamandridae), Eur. J. Immunol. 4:390.PubMedCrossRefGoogle Scholar
  24. Charlemagne, J., 1977, Thymus development in amphibians: Colonization of thymic endodermal rudiments by lymphoid stem-cells of mesenchymal origin in the urodele Pleurodeles waltlii Michah, Ann. Immunol. (Inst. Pasteur) 128c:897.Google Scholar
  25. Charlemagne, J., and Houillon, C., 1968, Effets de la thymectomie larvaire chez l’amphibien urodèle, Pleurodeles waltlii Michah. Production a l’état adulte d’une tolérance aux homogreffes cutanées, C.R. Acad. Sci. 267:253.Google Scholar
  26. Charlemagne, J., and Tournefier, A., 1975, Cell surface immunoglobulins of thymus and spleen lymphocytes in urodele amphibian Pleurodeles waltlii (Salamandridae), in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 251–256, Plenum Press, New York.Google Scholar
  27. Charlemagne, J., and Tournefier, A., 1977, Anti-horse red blood cells antibody synthesis in the Mexican axolotl Ambystoma mexicanum: Effect of thymectomy, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 267–275, Elsevier/North-Holland, Amsterdam.Google Scholar
  28. Chin, K. N., and Wong, W. C., 1977, Some ultrastructural observations on the intestinal mucosa of the toad (Bufo melanostictus)J. Anat. 123:331.PubMedGoogle Scholar
  29. Clark, J. C., and Newth, D. R., 1972, Immunological activity of transplanted spleens in Xenopus laevis, Experientia 28:951.CrossRefGoogle Scholar
  30. Clark, W. E., Le Gros, 1965, The Tissues of the Body, 5th ed., p. 56, Oxford University Press, London.Google Scholar
  31. Clothier, R. H., 1972, The histopathology of a lymphoreticular disease in Xenopus laevis, Ph.D. thesis, University of East Anglia.Google Scholar
  32. Clothier, R. H., and Balls, M., 1973, Mycobacteria and lymphoreticular tumours in Xenopus laevis, the South African clawed toad. I. Isolation, characterization and pathogenicity for Xenopus of M. marinum isolated from lymphoreticular tumour cells, Oncology 28:445.PubMedCrossRefGoogle Scholar
  33. Cohen, N., 1969, Immunogenetic and developmental aspects of tissue transplantation immunity in urodele amphibians, in: Biology of Amphibian Tumours (M. M. Mizell, ed.), pp. 153–168, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  34. Cohen, N., 1970, Tissue transplantation immunity and immunological memory in Urodela and Apoda, Transplant. Proc. 2:275.PubMedGoogle Scholar
  35. Cohen, N., 1971, Amphibian transplantation reactions: A review, Am. Zool. 11:193.Google Scholar
  36. Cohen, N., 1977, Phylogenetic emergence of lymphoid tissues and cells, in: The Lymphocyte: Structure and Function (J. J. Marchalonis, ed.), pp. 149–202, Dekker, New York.Google Scholar
  37. Cohen, N., and Collins, N. H., 1977, Major and minor histocompatibility systems of ectothermic vertebrates, in: The Major Histocompatibility System in Man and Animals (D. Götze, ed.), pp. 313–337, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  38. Cohen, N., and Horan, M., 1977, Lack of correlation between the rapidity of newt allograft rejection and the frequency and magnitude of stimulation in the mixed lymphocyte culture reaction, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 259–266, Elsevier/ North-Holland, Amsterdam.Google Scholar
  39. Cohen, N., and Turpen, J. B., 1978, Early ontogeny of heterogeneous populations of lymphocytes in anuran amphibians, in: Animal Models of Comparative and Developmental Aspects of Immunity and Disease (M. E. Gershwin and E. L. Cooper, eds.), pp. 37–47, Pergamon Press, Elmsford, N.Y.Google Scholar
  40. Coleman, R., and Phillips, A. D., 1972, Longterm retention of colloidal thorium dioxide in the liver and spleen of Xenopus laevis Daudin, Experientia 28:1326.PubMedCrossRefGoogle Scholar
  41. Collie, M. H., 1974, The location of soluble antigen in the spleen of Xenopus laevis, Experientia 30:1205.PubMedCrossRefGoogle Scholar
  42. Collie, M. H., and Turner, R. J., 1975, Influence of antigen dose on antibody production of intact and splenectomised Xenopus laevis, J. Exp. Zool. 192:173.PubMedCrossRefGoogle Scholar
  43. Collie, M. H., Turner, R. J., and Manning, M. J., 1975, Antibody production to lipopolysaccharide in thymectomized Xenopus, Eur. J. Immunol. 5:426.CrossRefGoogle Scholar
  44. Collins, N. H., and Cohen, N., 1976, Phylogeny of immunocompetent cells. II. In vitro behaviour of lymphocytes from the spleen, blood and thymus of the urodele Ambystoma mexicanum, in: Phylogeny of Thymus and Bone MarrowBursa Cells (R. IC Wright and E. L. Cooper, eds.), pp. 143–151, Elsevier/North-Holland, Amsterdam.Google Scholar
  45. Collins, N. H., Manickavel, V., and Cohen, N., 1975, In vitro responses of urodele lymphoid cells: Mitogenic and mixed lymphocyte culture reactivities, in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 305–314, Plenum Press, New York.Google Scholar
  46. Cone, R. E., and Marchalonis, J. J., 1972, Cellular and humoral aspects of the influence of environmental temperature on the immune response of Poikilothermie vertebrates, J. Immunol. 108:952PubMedGoogle Scholar
  47. Cooper, E. L., 1967a, Some aspects of the histogenesis of the amphibian lymphomyeloid system and its role in immunity, in: Ontogeny of Immunity (R. T. Smith, R. A. Good, and P. A. Miescher, eds.), pp. 87–101, University of Florida Press, Gainesville.Google Scholar
  48. Cooper, E. L., 1967b, Lymphomyeloid organs of Amphibia. I. Appearance during larval and adult stages of Rana catesbeiana, J. Morphol. 122:381.PubMedCrossRefGoogle Scholar
  49. Cooper, E. L., 1968, Lymphomyeloid organs of Amphibia, III. Antibody synthesis and lymph glands in larval bullfrogs, Anat. Rec. 162:453.PubMedCrossRefGoogle Scholar
  50. Cooper, E. L., 1973, The thymus and lymphomyeloid system in Poikilothermie vertebrates, in: Contemporary Topics in Immunobiology, Volume 2, Thymus Dependency (A. J. S. Davies and R. L. Carter, eds.), pp. 13–38, Plenum Press, New York.CrossRefGoogle Scholar
  51. Cooper, E. L., 1976, Immunity mechanisms, in: Physiology of the Amphibia, Vol. III (B. Lofts, ed.), pp. 163–272, Academic Press, New York.CrossRefGoogle Scholar
  52. Cooper, E. L., and Hildemann, W. H., 1965, Allograft reactions in bullfrog larvae in relation to thymectomy, Transplantation 3:446.PubMedCrossRefGoogle Scholar
  53. Cooper, E. L., and Schaefer, D. A., 1970, Bone marrow restoration of transplantation immunity in the leopard frog, Rana pipiens, Proc. Soc. Exp. Biol. Med. 135:406.PubMedGoogle Scholar
  54. Cooper, E. L., and Wright, R. K., 1976, The anuran amphibian spleen. An evolutionary model for terrestrial vertebrates, in: Immuno-Aspects of the Spleen (J. R. Battiste and J. W. Streuen, eds.), pp. 47–58, Elsevier/North-Holland, Amsterdam.Google Scholar
  55. Cooper, E. L., Brown, B. A., and Baculi, B. S., 1971, New observations on lymph gland (LMI) and thymus activity in larval bullfrogs (Rana catesbeiana), in: Morphological and Functional Aspects of Immunity (K. Lindahl-Kessling, G. Aim, and M. G. Hanna, eds.), pp. 1–10, Plenum Press, New York.CrossRefGoogle Scholar
  56. Cooper, E. L., Brown, B. A., and Wright, R. K., 1975, New ideas on amphibian immunity. The lymph gland: A generator of both T and B cells, Am. Zool. 15:85.Google Scholar
  57. Cooper, E. L., Klempau, A. E., Ramirez, J. A., and Zapata, A. G., 1980, Source of stem cells in evolution, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 3–14, Elsevier/North-Holland, Amsterdam.Google Scholar
  58. Cowden, R. R., 1965, Quantitative and qualitative cytochemical studies on the Amphiuma basophil leucocyte, Z. Zellforsch. Mikrosk, Anat. 67:219.CrossRefGoogle Scholar
  59. Cowden, R. R., and Dyer, R. F., 1971, Lymphopoietic tissue and plasma cells in amphibians, Am. Zool. 11:183.Google Scholar
  60. Cowden, R. R., Dyer, R. F., Gebhardt, B. M., and Volpe, E. P., 1968a, Amphibian plasma cells, J. Immunol. 100:1293.PubMedGoogle Scholar
  61. Cowden, R. R., Gebhardt, B. M., and Volpe, E. P., 1968b, The histophysiology of antibody-forming sites in the marine toad, Z. Zellforsch. Mikrosk. Anat. 85:196.PubMedCrossRefGoogle Scholar
  62. Csaba, G., Oläh, I., and Kapa, E., 1970, Phylogenesis of the mast cells. II. Ultrastructure of the mast cells in the frog, Acta Biol. Acad. Sci. Hung. 21:255.PubMedGoogle Scholar
  63. Curtis, S. K., and Volpe, E. P., 1971, Modification of responsiveness to allografts in larvae of the leopard frog by thymectomy, Dev. Biol. 25:177.PubMedCrossRefGoogle Scholar
  64. Curtis, S. K., Volpe, E. P., and Cowden, R. R., 1972, Ultrastructure of the developing thymus of the leopard frog (Rana pipiens)Z. Zellforsch. Mikrosk. Anat. 127:323.PubMedCrossRefGoogle Scholar
  65. Curtis, S. K., Cowden, R. R., and Nagel, J. W., 1979a, Ultrastructure of the bone marrow of the salamander Plethodon glutinosus (Caudata: Plethodontidae), J. Morphol. 159:151.CrossRefGoogle Scholar
  66. Curtis, S. K., Cowden, R. R., and Nagel, J. W., 1979b, Ultrastructural and histochemical features of the thymus glands of the adult lungless salamander, Plethodon glutinosus (Caudata: Plethodontidae), J. Morphol. 160:241.PubMedCrossRefGoogle Scholar
  67. Dardenne, M., Tournefier, A., Charlemagne, J., and Bach, J. F., 1973, Studies on thymus products. VII. Presence of thymic hormone in urodele serum, Ann. Immunol. (Inst. Pasteur) 124c:465.Google Scholar
  68. Dawson, A. B., 1932, Haemopoietic loci in Necturus maculosus, Anat. Rec. 52:367.CrossRefGoogle Scholar
  69. Debons, M. C., and Deparis, P., 1973, Mise en évidence des immunocytes par immunocytoadhérence chez l’Amphibien Urodèle Pleurodeles waltlii Michah après immunisation par les globules rouges de mouton, C.R. Soc. Biol. 167:568.Google Scholar
  70. Deparis, P., and Flavin, M., 1973, Les effects de la splénectomie précoce chez 1’Amphibien Urodèle Pleurodeles waltlii Michah, J. Physiol. (Paris) 66:19.Google Scholar
  71. Deparis, P. and Jaylet, A., 1975, Recherches sur l’origine des différentes lignées de cellules sanguines chez l’Amphibien Urodèle Pleurodeles waltlii, J. Embryol. Exp. Morphol. 33:665.PubMedGoogle Scholar
  72. Diener, E., and Marchalonis, J., 1970, Cellular and humoral aspects of the primary immune response of the toad, Bufo marinus, Immunology 18:279.Google Scholar
  73. Diener, E., and Nossal, G. J. V., 1966, Phylogenetic studies on the immune response. I. Localization of antigens and immune response in the toad, Bufo marinus, Immunology 10:535.Google Scholar
  74. Donnelly, N., Manning, M. J., and Cohen, N., 1976, Thymus dependence of lymphocyte sub-populations in Xenopus laevis, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 133–141, Elsevier/North-Holland, Amsterdam.Google Scholar
  75. Du Pasquier, L., 1965, Aspects cellulaires et humoraux d l’intolérance aux homogreffes de tissu musculaire chez le têtard d’Alytes obstetricans; rôle du thymus, C.R. Acad. Sci. 261:1144.Google Scholar
  76. Du Pasquier, L., 1968, Les protéines sériques et le complexe lympho-myéloide chez le têtard d’Alytes obstetricans normal et thymectomisé, Ann. Inst. Pasteur Paris 114:490.Google Scholar
  77. Du Pasquier, L., 1970, Ontogeny of the immune response in animals having less than one million lymphocytes: The larvae of the toad Alytes obstetricans, Immunology 19:353.PubMedGoogle Scholar
  78. Du Pasquier, L., and Bernard, C. C. A., 1980, Active suppression of the allogeneic histocompatibility reactions during the metamorphosis of the clawed toad Xenopus, Differentiation 16:1.PubMedCrossRefGoogle Scholar
  79. Du Pasquier, L., and Horton, J. D., 1976, The effect of thymectomy on the mixed leucocyte reaction and phytohaemagglutinin responsiveness in the clawed toad, Xenopus laevis, Immunogenetics 3:105.CrossRefGoogle Scholar
  80. Du Pasquier, L., and Miggiano, V. C., 1973, The mixed leucocyte reaction in the toad Xenopus laevis: A family study, Transplant. Proc. 5:1457.PubMedGoogle Scholar
  81. Du Pasquier, L., and Weiss, N., 1973, The thymus during the ontogeny of the toad Xenopus laevis: Growth, membrane-bound immunoglobulins and mixed lymphocyte reaction, Eur. J. Immunol. 3:773.PubMedCrossRefGoogle Scholar
  82. Du Pasquier, L., Weiss, N., and Loor, F., 1972, Direct evidence for immunoglobulins on the surface of the thymus lymphocytes of amphibian larvae, Eur. J. Immunol. 2:366.PubMedCrossRefGoogle Scholar
  83. Dustin, A. P., 1911, Le thymus de l’Axolotl, Arch. Biol. 26:557.Google Scholar
  84. Eipert, E. F., Wright, R. K., and Cooper, E. L., 1977, Comparison of spleen and bone marrow mitogen responses in Rana catesbeiana, Am. Zool. 17:892.Google Scholar
  85. Eipert, E. F., Klempau, A. E., Lallone, R. L., and Cooper, E. L., 1979, Bone marrow and antibody synthesis in Rana, Cell. Immunol. 46:275.PubMedCrossRefGoogle Scholar
  86. Evans, E. E., Kent, S. P., Bryant, R. E., and Moyer, M., 1966, Antibody formation and immunological memory in the marine toad, in: Phylogeny and Immunity (R. T. Smith, R. A. Good, and P. A. Miescher, eds.), pp. 218–226, University of Florida Press, Gainesville.Google Scholar
  87. Fabrizio, M., and Charipper, H. A., 1941, The morphogenesis of the thymus gland of Rana sylvatica as correlated with certain stages of metamorphosis, J. Morphol. 68:179.CrossRefGoogle Scholar
  88. Fache, B., and Charlemagne, J., 1975, Influence on allograft rejection of thymectomy at different stages of larval development in urodele amphibian Pleurodeles waltlii Michah (Salamandridae), Eur. J. Immunol. 5:155.PubMedCrossRefGoogle Scholar
  89. Fey, F., 1962, Haematologische Untersuchungen an Xenopus laevis Daudin. I. Die Morphologie des Blutes mit einigen vergleichenden Betrachtungen bei Rana esculenta und Rana temporaria, Morphol. Jahrb. 103:9.Google Scholar
  90. Garavini, C., 1970, Seasonal variations in the hematic picture in Triturus cristatus, Riv. Biol. 63:459.Google Scholar
  91. Garcia-Herrera, F., and Cooper, E. L., 1968, Organos lifoides del anhbio apoda Typhlonectes compressicaudata, Sombretiro de Acta Medica IV 1968:157.Google Scholar
  92. Goldshein, S. J., and Cohen, N., 1972, Phylogeny of immunocompetent cells. I. In vitro blastogenesis and mitosis of toad (Bufo marinus) splenic lymphocytes in response to phytohemagglutinin and in mixed lymphocyte cultures. J. Immunol. 108:1025.PubMedGoogle Scholar
  93. Goldstine, S. N., Manickavel, V., and Cohen, N., 1975, Phylogeny of gut-associated lymphoid tissue, Am. Zool. 15:107.Google Scholar
  94. Goldstine, S. N., Collins, N. H., and Cohen, N., 1976, Mitogens as probes of lymphocyte heterogeneity in anuran amphibians, in: Immunologic Phylogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 343–352, Plenum Press, New York.Google Scholar
  95. Good, R. A., Finstad, J., Pollara, B., and Gabrielsen, A. E., 1966, Morphologic studies on the evolution of the lymphoid tissues among the lower vertebrates, in: Phylogeny of Immunity (R. T. Smith, R. A. Good, and P. A. Miescher, eds.), pp. 149–170, University of Florida Press. Gainesville.Google Scholar
  96. Green, N., and Cohen, N., 1979, Phylogeny of immunocompetent cells. III. Mitogen response characteristics of lymphocyte subpopulations from normal and thymectomized frogs (Xenopus laevis)Cell. Immunol. 48:59.PubMedCrossRefGoogle Scholar
  97. Gruenwald, D. A., and Ruben, L. N., 1979, The effect of adult thymectomy upon helper function in Xenopus laevis, the South African clawed toad, Immunology 38:191.Google Scholar
  98. Hanzlikova, V., 1979, Histochemical and ultrastructural properties of myoid cells in the thymus of the frog, Cell Tissue Res. 197:105.PubMedGoogle Scholar
  99. Henry, M., and Charlemagne, J., 1977, Plasmocytic series in the perihepatic layer of the urodele amphibian Pleurodeles waltlii Michah (Salamandridae), Dev, Comp. Immunol. 1:23.CrossRefGoogle Scholar
  100. Hightower, J. A., 1975, DNA synthesis in the thymus of the adult newt Notophthalmus viridescens, Acta Anat. 92:454.PubMedCrossRefGoogle Scholar
  101. Hightower, J. A., and Haar, J. L., 1975, A light and electron microscopic study of the myelopoietic cells in the perihepatic and subcapsular region of the liver in the adult aquatic newt Notophthalmus viridescens, Cell Tissue Res. 159:63.PubMedCrossRefGoogle Scholar
  102. Hightower, J. A., and St. Pierre, R. L., 1971, Haemopoietic tissue in the adult newt, Notophthalmus viridescens, J. Morphol. 135:299.CrossRefGoogle Scholar
  103. Hollyfield, J. G., 1966, The origin of erythroblasts in Rana pipiens tadpoles, Dev. Biol. 14:461.CrossRefGoogle Scholar
  104. Holzapfel, R. A., 1937, The cyclic character of hibernation in frogs, Q. Rev. Biol. 12:65.CrossRefGoogle Scholar
  105. Horton, J. D., 1971a, Histogenesis of the lymphomyeloid complex in the larval leopard frog, Rana pipiens, J. Morphol. 134:1.PubMedCrossRefGoogle Scholar
  106. Horton, J. D., 1971b, Ontogeny of the immune system in amphibians, Am. Zool. 11:219.Google Scholar
  107. Horton, J. D., and Horton, T. L., 1975, Development of transplantation immunity and restoration experiments in the thymectomized amphibian, Am. Zool. 15:73.Google Scholar
  108. Horton, J. D., and Manning, M. J., 1972, Response to skin allografts in Xenopus laevis following thymectomy at early stages of lymphoid organ maturation, Transplantation 14:141.PubMedCrossRefGoogle Scholar
  109. Horton, J. D., and Manning, M. J., 1974a, Lymphoid organ development in Xenopus thymectomized at eight days of age, J. Morphol. 143:385.PubMedCrossRefGoogle Scholar
  110. Horton, J. D., and Manning, M. J., 1974b, Effect of early thymectomy on the cellular changes occurring in the spleen of the clawed toad following administration of soluble antigen, Immunology 26:797.PubMedGoogle Scholar
  111. Horton, J. D., and Shérif, N. E. H. S., 1977, Sequential thymectomy in the clawed toad: Effect on mixed leucocyte reactivity and phytohaemagglutinin responsiveness, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 283–290, Elsevier/North-Holland, Amsterdam.Google Scholar
  112. Horton, J. D., Rimmer, J. J., and Horton, T. L., 1977a, Critical role of the thymus in establishing humoral immunity in amphibians: Studies on Xenopus thymectomized in larval and adult life, Dev. Comp. Immunol. 1:119.PubMedCrossRefGoogle Scholar
  113. Horton, J. D., Horton, T. L., and Rimmer, J. J., 1977b, Splenic involvement in amphibian transplantation immunity, Transplantation 24:247.PubMedCrossRefGoogle Scholar
  114. Horton, J. D., Edwards, B. F., Ruben, L. N., and Mette, S., 1979, Use of different carriers to demonstrate thymic-dependent and thymic-independent anti-trinitrophenyl reactivity in the amphibian Xenopus laevis, Dev. Comp. Immunol. 3:621.PubMedCrossRefGoogle Scholar
  115. Horton, J. D., Smith, A. R., Williams, N. H., Smith, A., and Sherif, N. E. H. S., 1980, Lymphocyte reactivity to T’ and ‘B’ cell mitogens in Xenopus laevis: Studies on thymus and spleen, Dev. Comp. Immunol. 4:75.PubMedCrossRefGoogle Scholar
  116. James, E. S., 1939, The morphology of the thymus and its changes with age in the neotenous amphibian Necturus maculosus, J. Morphol. 64:445.CrossRefGoogle Scholar
  117. Jolly, J., 1919, Sur les organes lymphoîdes céphaliques des betraciens, C.R. Soc. Biol. 82:200.Google Scholar
  118. Jolly, J., 1923, Traité Technique d’Hématologie, Maloine, Paris.Google Scholar
  119. Jolly, J., and Lièvre, C., 1931, Hematopoïèse intra-cardiaque chez les Urodèles, C.R. Soc. Biol. 106:74.Google Scholar
  120. Jordan, H. E., 1933, The evolution of blood-forming tissues, Q. Rev. Biol. 8:58.CrossRefGoogle Scholar
  121. Jordan, H. E., 1938, Comparative hematology, in: Handbook of Hematology (H. Downey, ed.), pp. 704–862, Harper (Hoeber), New York.Google Scholar
  122. Jordan, H. E., and Spiedel, C. C., 1923a, An experimental study of the spleen of the frog. Rana pipiens, Anat. Rec. 25:136.Google Scholar
  123. Jordan, H. E., and Spiedel, C. C., 1923b, Blood cell formation and destruction in relation to the mechanism of thyroid accelerated metamorphosis in the larval frog. J. Exp. Med. 38:529.PubMedCrossRefGoogle Scholar
  124. Jurd, R. D., 1977, Secretory immunoglobulins and gut-associated lymphoid tissue in Xenopus laevis, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 307–314, Elsevier/ North-Holland, Amsterdam.Google Scholar
  125. Jurd, R. D., and Doritis, A., 1977, Antibody-dependent cellular cytotoxicity in poikilotherms, Dev. Comp. Immunol. 1:341.PubMedCrossRefGoogle Scholar
  126. Jurd, R. D., and Stevenson, G. T., 1976, Surface immunoglobulins on Xenopus laevis lymphocytes, Comp. Biochem. Physiol. A 53:381.PubMedCrossRefGoogle Scholar
  127. Kapa, E., 1963, Histological and histochemical analysis of the thymus in tailless amphibians, Acta Morphol. Acad. Sci. Hung. 12:1.PubMedGoogle Scholar
  128. Kapa, E., and Csaba, G., 1972, Phylogenesis of mast cells. III. Effect of hormonal induction on the maturation of mast cells in the frog, Acta Biol. Acad. Sci. Hung. 23:47.PubMedGoogle Scholar
  129. Kapa, E., Olâh, I., and Törö, I., 1968, Electron-microscopic investigation of the thymus of adult frog (Rana esculenta)Acta Biol. Acad. Sci. Hung. 19:203.PubMedGoogle Scholar
  130. Karpenter, K. L., and Turpen, J. B., 1979, Experimental studies on hemopoiesis in the pronephros of Rana pipiens, Differentiation 14:167.CrossRefGoogle Scholar
  131. Katagiri, C., Kawahara, H., Nagata, S., and Tochinai, S., 1980, The mode of participation of T-cells in immune reactions as studied by transfer of triploid lymphocytes into early-thymectomized diploid Xenopus, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 163–171, Elsevier/North-Holland, Amsterdam.Google Scholar
  132. Kawahara, H., Nagata, S., and Katagiri, C., 1980, Role of injected thymocytes in reconstituting cellular and humoral immune responses in early thymectomized Xenopus: Use of triploid markers, Dev. Comp. Immunol. 4:679.PubMedCrossRefGoogle Scholar
  133. Kent, S. P., Evans, E. E., and Attleberger, M. H., 1964, Comparative immunology. Lymph nodes in the amphibian, Bufo marinus, Proc. Soc. Exp. Biol. Med. 116:456.PubMedGoogle Scholar
  134. Kingsbury, B. F., 1912, Amphibian tonsils, Anat. Anz. 42:593.Google Scholar
  135. Klug, H., 1967, Submikroskipische Zytologie des Thymus von Ambystoma mexicanum, Z. Zeilforsch. Mikrosk, Anat. 78:388.CrossRefGoogle Scholar
  136. Kraft, N., and Shortman, K., 1972, Differentiation of antibody-forming cells in toad spleen. A study using density and sedimentation velocity cell separation, J. Cell Biol. 52:438.PubMedCrossRefGoogle Scholar
  137. Le Douarin, N., 1966, L’hématopoïèse dans les formes embryonnaires et jeunes des vertébrés, Annee Biol. 5(ser. 4):105.Google Scholar
  138. Mackay, I. R., and Goldstein, G., 1967, Thymus and muscle, Clin. Exp. Immunol. 2:139.PubMedGoogle Scholar
  139. Maclean, N., and Jurd, R. D., 1972, The control of haemoglobin synthesis, Biol. Rev. 47:393.PubMedCrossRefGoogle Scholar
  140. Maniatis, G. M., and Ingram, U. M., 1971, Erythropoiesis during amphibian metamorphosis. I. Site of maturation of erythrocytes in Rana catesbeiana, J. Cell Biol. 49:372.PubMedCrossRefGoogle Scholar
  141. Manning, M. J., 1971, The effect of early thymectomy on histogenesis of the lymphoid organs in Xenopus laevis, J. Embryol. Exp. Morphol. 26:219.PubMedGoogle Scholar
  142. Manning, M. J., 1978, The amphibian immune system and emerging adaptations to life on land, in: Proceedings of the Zodiac Symposium on Adaptation, pp. 88–91, Pudoc, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.Google Scholar
  143. Manning, M. J., and Collie, M. H., 1977, The ontogeny of thymic dependence in the amphibian Xenopus laevis, in: Developmental Itnmunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 291–298, Elsevier/North-Holland, Amsterdam.Google Scholar
  144. Manning, M. H., and Horton, J. D., 1969, Histogenesis of lymphoid organs in larvae of the South African clawed toad, Xenopus laevis (Daudin), J. Embryol. Exp. Morphol. 22:265.PubMedGoogle Scholar
  145. Manning, M. J., and Turner, R. J., 1972, Some responses of the clawed toad, Xenopus laevis, to soluble antigens administered in adjuvant, Comp. Biochem. Physiol. A 42:735.PubMedCrossRefGoogle Scholar
  146. Manning, M. J., and Turner, R. J., 1976, Comparative Immunobiology, Blackie, Glasgow.Google Scholar
  147. Manning, M. J., Donnelly, N., and Cohen, N., 1976, Thymus-dependent and thymus-independent components of the amphibian immune system, in: Phytogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 123–132, Elsevier/North-Holland, Amsterdam.Google Scholar
  148. Marchalonis, J. J., and Cohen, N., 1973, Isolation and partial characterization of immunoglobulin from a urodele amphibian (Necturus maculosus)Immunology 24:395.PubMedGoogle Scholar
  149. Mattes, M. J., and Steiner, L. A., 1978, Anti-sera to frog immunoglobulins cross-react with a periodate-sensitive cell surface determinant, Nature (London) 273:761.CrossRefGoogle Scholar
  150. Maximow, A., 1927, cited by Weidenreich, R., 1933, in: Handbuch der vergleichenden Anatomie der Wirbeltiere (L. Bolk, E. Göppert, and E. Kallius, eds.), Vol. VI, pp. 375–447, Urban & Schwarzenberg, Munich.Google Scholar
  151. Michea-Hamzehpour, M., 1977, Indirect immunofluorescent identification of 19S immunoglobulin-containing cells in the intestinal mucosa of Xenopus laevis, J. Exp. Zool. 201:109.PubMedCrossRefGoogle Scholar
  152. Minagawa, Y., Ohnishi, K., and Murakawa, S., 1975, Structure and immunological function of lymphomyeloid organs in the bullfrog Rana catesbeiana, in: Immunologic Phytogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 257–266, Plenum Press, New York.Google Scholar
  153. Mitsuhashi, S., Kurashige, S., Mishima, S., Yamaguchi, N., and Fukai, K., 1971, Antibody production without reactive proliferation of pyroninophilic cells in the rainbow trout and African clawed toad, Tohoku J. Exp. Med. 103:7.PubMedCrossRefGoogle Scholar
  154. Moticka, E. J., Brown, B. A., and Cooper, E. L., 1973, Immunoglobulin synthesis in bullfrog larvae, J. Immunol. 110:855.PubMedGoogle Scholar
  155. Murakawa, S., 1968, Studies on the transplantation immunity in the Japanese newt, Cynops pyrrhogaster, SABCO J. 4:17.Google Scholar
  156. Myers, M. A., 1928, A study of the tonsillar developments in the lingual region of anurans, J. Morphol. 45:399.CrossRefGoogle Scholar
  157. Nagata, S., 1976, An electron microscopic study on the thymus of larval and metamorphosed toads, Xenopus laevis Daudin, J. Fac. Sci. Hokkaido Univ. Ser. 6 20:263.Google Scholar
  158. Nagata, S., and Katagiri, C., 1978, Lymphocyte surface immunoglobulin in Xenopus laevis. Light and electron microscopic demonstration by immunoperoxidase method, Dev. Comp. Immunol. 2:277.PubMedCrossRefGoogle Scholar
  159. Nagata, S., and Tochinai, S., 1978, Isolated lymphocytes can restore allograft rejection capacity of early-thymectomized Xenopus, Dev. Comp. Immunol. 2:637.CrossRefGoogle Scholar
  160. Nigam, H. C., 1977, Tonsils and other leucocytopoietic centres in the Indian water-skipping frog, Rana cyanophlyctis (Boulanger), Curr. Sci. 46:435.Google Scholar
  161. Nossal, G. J. V., and Ada, G. L., 1971, Antigens, Lymphoid Cells, and the Immune Response, Academic Press, New York.Google Scholar
  162. Rimmer, J. J., 1977, Electron microscopic studies of developing amphibian thymus, Dev. Comp. Immunol. 1:321.PubMedCrossRefGoogle Scholar
  163. Rimmer, J. J., and Gearing, A. J. H., 1980, Antigen specific migration inhibition of peritoneal exudate cells in an anuran (Rana temporaria), in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 195–200, Elsevier/North-Holland, Amsterdam.Google Scholar
  164. Rimmer, J. J., and Horton, J. D., 1977, Allograft rejection in larval and adult Xenopus following early thymectomy, Transplantation 23:142.PubMedCrossRefGoogle Scholar
  165. Ruben, L. N., 1975, Ontogeny, phylogeny and cellular cooperation, Am. Zool. 15:93.Google Scholar
  166. Ruben, L. N., 1976, Phylogeny of cell-cell cooperation in immunity, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 120–166, Blackwell, Oxford.Google Scholar
  167. Ruben, L. N., and Edwards, B. F., 1979, The phylogeny of the emergence of “T-B” collaboration in humoral immunity, in: Contemporary Topics in Immunobiology (N. Cohen and J. J. Marchalonis, eds.), Vol. 9, pp. 55–89, Plenum Press, New York.Google Scholar
  168. Ruben, L. N., van der Hoven, A., and Dutton, R. W., 1973, Cellular cooperation in hapten-carrier responses in the newt, Triturus viridescens, Cell. Immunol. 6:300.PubMedCrossRefGoogle Scholar
  169. Ruben, L. N., Clothier, R., Hodgson, R., and Balls, M., 1977, The in vitro reconstitution of thymus cell dependent humoral immune response of thymectomized Xenopus laevis with allogeneic thymocytes, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 277–282, Elsevier/North-Holland, Amsterdam.Google Scholar
  170. Secombes, C. J., and Manning, M. J., 1980, Comparative studies on the immune system of fishes and amphibians: Antigen localization in the carp Cyprinus carpio L., J. Fish Dis. 3:399.CrossRefGoogle Scholar
  171. Sklower, A., 1925, Das inkretorische System im Lebenszyklus der Frösche Rana temporaria L. I. Schildrüse, Hypophyse, Thymus und Keimdrüsen, Z. Vgl. Physiol 2:474.CrossRefGoogle Scholar
  172. Sterba, G., 1950, Über die morphologischen und histogenetischen Thymus-probleme bei Xenopus laevis Daudin nebst einigen Bermerkungen über die Morphologie der Kaulquappen, Abh. Sachs. Akad. Wiss. Leipzig Math. Naturwiss. Kl. 44:1.Google Scholar
  173. Sterba, G., 1951, Untersuchungen an der Milz des Krallenfrösches (Xenopus laevis Daudin), Morphol. Jahrb. 90:221.Google Scholar
  174. Sterba, G., 1952, Mitteilungen über die Altersinvolution des Amphibien thymus. I. Volumetrische Bestimmungen am Thymus des Krallenfrosches Xenopus laevis Daud., Anat. Anz. 99:106.PubMedGoogle Scholar
  175. Tahan, A. M., and Jurd, R. D., 1979, Delayed hypersensitivity in Ambystoma mexicanum, Dev. Comp. Immunol. 3:299.PubMedCrossRefGoogle Scholar
  176. Tochinai, S., 1975, Distribution of lympho-epithelial tissues in the larval African clawed toad, Xenopus laevis (Daudin), J. Fac. Sci. Hokkaido Univ. Ser. 6 19:803.Google Scholar
  177. Tochinai, S., 1976a, Demonstration of thymus-independent immune system in Xenopus laevis. Response to polyvinylpyrrolidone, Immunology 31:125.PubMedGoogle Scholar
  178. Tochinai, S., 1976b, Lymphoid changes in Xenopus laevis following thymectomy at the initial stage of its histogenesis, J. Fac. Sci. Hokkaido Univ. Ser. 6 20:175.Google Scholar
  179. Tochinai, S., and Katagiri, C., 1975, Complete abrogation of immune response to skin allografts and rabbit erythrocytes in the early thymectomized Xenopus, Dev. Growth Differ. 17:383.CrossRefGoogle Scholar
  180. Tochinai, S., Nagata, S., and Katagiri, C., 1976, Restoration of immune responsiveness in early thymectomized Xenopus by implantation of histocompatible adult thymus, Eur. J. Immunol. 6:711.PubMedCrossRefGoogle Scholar
  181. Tooze, J., and Davies, H. G., 1968, Light and electron microscopic observations on the spleen and the splenic leucocytes of the newt Triturus cristatus, Am. J. Anat. 123:521.PubMedCrossRefGoogle Scholar
  182. Töró, I., Oláh, I., Röhlich, P., and Virágh, S., 1969, Electron microscopic observations on myoid cells of the frog’s thymus, Anat. Rec. 165:329.PubMedCrossRefGoogle Scholar
  183. Tournefier, A., 1972, Les reactions immunitaires chez les Amphibiens Urodèles. III. Rôle du thymus dans l’immunité de transplantation. Capacité d’immunisation aux antigènes particulaires chez le Pleurodèle et le Triton alpestre adultes, in: Phylogenic and Ontogenic Study of the Immune Response and Its Contribution to the Immunological Theory, Colloque Inserm, pp. 105–112, Ministry of Public Health, Paris.Google Scholar
  184. Tournefier, A., 1973, Développement des organes lymphoîdes chez l’Amphibien Urodèle Triturus alpestris Laur.; tolérance des allogreffes après la thymectomie larvaire, J. Embryol. Exp. Morphol. 29:383.PubMedGoogle Scholar
  185. Tournefier, A., and Charlemagne, J., 1975, Antibodies against salmonella and SRBC in urodele amphibians: Synthesis and characterizations, in: Immunologic Phytogeny (W. H. Hildemann and A. A. Benedict, eds.), pp. 161–172, Plenum Press, New York.Google Scholar
  186. Turner, R. J., 1969, The functional development of the reticuloendothelial system in the toad, Xenopus laevis (Daudin), J. Exp. Zool. 170:467.PubMedCrossRefGoogle Scholar
  187. Turner, R. J., 1970, The influence of colloidal carbon on hemagglutinin production in the toad, Xenopus laevis, J. Reticuloendothelial Soc. 8:434.Google Scholar
  188. Turner, R. J., 1973, Response of the toad, Xenopus laevis, to circulating antigens. II. Responses after splenectomy, J. Exp. Zool. 183:35.PubMedCrossRefGoogle Scholar
  189. Turner, R. J., and Manning, M. J., 1973, Response of the toad, Xenopus laevis, to circulating antigens. I. Cellular changes in the spleen, J. Exp. Zool. 183:21.PubMedCrossRefGoogle Scholar
  190. Turner, R. J., and Manning, M. J., 1974, Thymic dependence of amphibian antibody responses, Eur. J. Immunol. 4:343.PubMedCrossRefGoogle Scholar
  191. Turner, R. J., Tarn, N. D., and Manning, M. J., 1974, Effects of Corynebacterium parvum and Freund’s adjuvants on amphibian antibody responses, J. Reticuloendothelial Soc. 16:232.Google Scholar
  192. Turpen, J. B., 1980, Early embryogenesis of hemopoietic cells in Rana pipiens, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 15–24, Elsevier/North-Holland, Amsterdam.Google Scholar
  193. Turpen, J. B., Turpen, C. J., and Flajnik, M., 1979, Experimental analysis of hematopoietic cell development in the liver of larval Rana pipiens, Dev. Biol. 69:466.PubMedCrossRefGoogle Scholar
  194. van Rooijen, N., 1980, Immune complex trapping in lymphoid follicles: A discussion on possible functional implications, in: Phytogeny of Immunological Memory (M. J. Manning, ed.), pp. 281–290, Elsevier/North-Holland, Amsterdam.Google Scholar
  195. von Braunmühl, A., 1926, Über einige myelolymphoide und lymphoepitheliale Organe der Anuren, Z. Mikrosk, Anat. Forsch. 4:635.Google Scholar
  196. Warr, G. W., Deluca, D., and Marchalonis, J. J., 1980, Phylogeny and ontogeny of antigen-specific T cell receptors, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 99–110, Elsevier/North-Holland, Amsterdam.Google Scholar
  197. Webster, W. D., 1934, The development of the thymus bodies in Necturus maculosus, J. Morphol. 56:295.CrossRefGoogle Scholar
  198. Weilacher, S., 1933, Die Milz der Gymnophionen Beitrag z. Kenntnis der Gymnophionen, Morphol. Jahrb. 72:469.Google Scholar
  199. Weiss, N., Horton, J. D., and Du Pasquier, L., 1973, The effect of thymectomy on cell surface associated and serum immunoglobulin in the toad, Xenopus laevis, Daudin: A possible inhibitory role of the thymus on the expression of immunoglobulins, in: Phylogenetic and Ontogenetic Study of the Immune Response and Its Contribution to the Immunological Theory, Colloque Inserm, pp. 165–174, Ministry of Public Health, Paris.Google Scholar
  200. Welsch, U., and Storch, V., 1972, Elektronenmikroskopische Untersuchungen an der Leber von Ichthyophis kohtaoensis (Gymnophiona), Zool. Jahrb, Anat. Abt. Ontog. Tiere 89:621.Google Scholar
  201. Wiedersheim, R., 1879, cited by Pischinger, A., 1933, in: Handbuch der vergleichenden Anatomie der Wirbeltiere (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.), Vol. III, pp. 279–348, Urban & Schwarzenberg, Munich.Google Scholar
  202. Witschi, E., 1956, Development of Vertebrates, Saunders, Philadelphia.Google Scholar
  203. Wong, W. C., 1972, Lymphoid aggregations in the oesophagus of the toad (Bufo melanostictus)Acta Anat. 83:461.PubMedCrossRefGoogle Scholar
  204. Wright, R. K., and Cooper, E. L., 1980, Temperature and immunological memory in anuran amphibians, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 155–160, Elsevier/North-Holland, Amsterdam.Google Scholar
  205. Wright, R. K., Eipert, E. F., and Cooper, E. L., 1978, Regulatory role of temperature on the development of ectothermic vertebrate lymphocyte populations, in: Animal Models of Comparative and Developmental Aspects of Immunity and Disease (M. E. Gershwin and E. L. Cooper, eds.), pp. 80–92, Pergamon, Press, Elmsford, N.Y.Google Scholar
  206. Yamaga, K. M., Kubo, R. T., and Etlinger, H. M., 1978, Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. II. Delineation between Ig-specific and cross-reactive membrane components, J. Immunol. 120:2074.PubMedGoogle Scholar
  207. Yoffey, J. M., 1960, The lymphomyeloid complex, in: Haemopoiesis (G. E. W. Wolstenholme and M. O’Conner, eds.), Ciba Foundation Symposium, pp. 1–36, Churchill, London.Google Scholar
  208. Zettergren, L. D., Lydyard, P. M., and Parkhouse, R. M. E., 1977, Liver as a site of B cell generation in Xenopus laevis, Fed. Proc. 36:1239.Google Scholar
  209. Zettergren, L. D., Kubagawa, H., and Cooper, M. D., 1980, Development of B cells in Rana pipiens, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 177–185, Elsevier/North-Holland, Amsterdam.Google Scholar
  210. Zylbersac, S., 1936, Sur la nature des cellules pigmentaires dans le foie des Amphibiens, Arch. Int. Med. Exp. 11:545.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Margaret J. Manning
    • 1
  • John D. Horton
    • 2
  1. 1.Department of Biological SciencesPlymouth PolytechnicPlymouthEngland
  2. 2.Department of ZoologyUniversity of DurhamEngland

Personalised recommendations