Advertisement

RES Structure and Function of the Fishes

  • Larry J. Mc Cumber
  • M. Michael Sigel
  • Richard J. Trauger
  • Marvin A. Cuchens

Abstract

Fish are the earliest vertebrates which have a well-developed immune system characterized by both cellular and humoral branches endowed with specificity and memory. More specifically, since invertebrates apparently lack a molecule resembling the vertebrate antibody molecule (Bang, 1973; Shapiro, 1975), fish are the first group of animals which clearly possess an immunoglobulin component. In addition, although there is evidence indicating cellular function in recognition of non-self in invertebrates (reviewed in Cooper, 1976), again fish are the first group of animals where T-like and B-like lymphocytes may actually attain a level of specialization.

Keywords

Rainbow Trout Effector Cell Allograft Rejection Bony Fish Cartilaginous Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J. B., 1980, Precipitins in the serum of the Atlantic salmon, Dev. Comp. Immunol. 4:641.PubMedCrossRefGoogle Scholar
  2. Avtalion, R. R., Wojdani, A., Malik, Z., Shahrabani, R., and Duczyminer, M., 1973, Influence of environmental temperature on the immune response in fish, Curr. Top. Microbiol. Immunol. 61:1.PubMedGoogle Scholar
  3. Avtalion, R. R., Weiss, E., Moalem, T., and Milgram, L., 1976, Regulatory effects of temperature upon immunity in ectothermic vertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 227–238, Blackwell, Oxford.Google Scholar
  4. Avtalion, R. R., Wishkovsky, A., and Katz, D., 1980, Regulatory effect of temperature on specific suppression and enhancement of the humoral response in fish, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 113–121, Elsevier/North-Holland, Amsterdam.Google Scholar
  5. Bang, F., 1973, Immune reactions among marine and other invertebrates, BioScience 23:584.CrossRefGoogle Scholar
  6. Beasley, A. R., Sigel, M. M., and Clem, L. W., 1966, Latent infection in marine fish cell tissue cultures, Proc. Soc. Exp. Biol Med. 121:1169.PubMedGoogle Scholar
  7. Bisset, K. A., 1946, The effect of temperature on non-specific infections of fish, J. Pathol. Bacteriol. 58:251.PubMedCrossRefGoogle Scholar
  8. Bisset, K. A., 1947a, Bacterial infection and immunity in lower vertebrates and invertebrates, J. Hyg. 45:128.CrossRefGoogle Scholar
  9. Bisset, K. A., 1947b, The effect of temperature on immunity in Amphibia, J. Pathol. Bacteriol. 59:301.PubMedCrossRefGoogle Scholar
  10. Bisset, K. A., 1947c, Natural and acquired immunity in frogs and fish, J. Pathol. Bacteriol. 59:79.CrossRefGoogle Scholar
  11. Bisset, K. A., 1948, The effect of temperature upon antibody protection in cold-blooded vertebrates, J. Pathol. Bacteriol. 60:87.PubMedCrossRefGoogle Scholar
  12. Borysenko, M., and Hildermann, W. H., 1970, Reactions to skin allografts in the horn shark, Heterodontis francisci, Transplantation 10:545.CrossRefGoogle Scholar
  13. Botham, J. W., Grace, M. F., and Manning, M. J., 1980, Ontogeny of first set and second set alloimmune reactivity in fishes, in: Phylogeny of Immunological Memory (M. J. Manning, ed.), pp. 83–92, Elsevier/North-Holland, Amsterdam.Google Scholar
  14. Carton, Y., 1973, La response immunitaire chez les agnathes et les poissons. Structure des immunoglobulines, Ann. Biol. 12:139.Google Scholar
  15. Clem, L. W., and Sigel, M. M., 1963, Comparative immunochemical and immunological reactions in marine fishes with soluble viral and bacterial antigens, Fed. Proc. 23:1138.Google Scholar
  16. Clem, L. W., and Small, P. A., 1967, Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark, J. Exp. Med. 125:893.PubMedCrossRefGoogle Scholar
  17. Clem, L. W., McLean, W. E., Shankey, V. T., and Cuchens, M. A., 1977, Phylogeny of lymphocyte heterogeneity. I. Membrane immunoglobulins of teleost lymphocytes, Dev. Comp. Immunol. 1:105.PubMedCrossRefGoogle Scholar
  18. Cohen, N., 1977, Phylogenetic emergence of lymphoid cells and tissues, in: The Lymphocyte (J. J. Marchalonis, ed.), pp. 149–202, Dekker, New York.Google Scholar
  19. Cooper, E. L., 1976, Comparative Immunology, p. 88, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  20. Corbel, M. J., 1975, The immune response in fish: A review, J. Fish Biol. 7:539.CrossRefGoogle Scholar
  21. Cotton, W. T., 1951, Blood cell formation in certain teleost fishes, Blood 6:39.Google Scholar
  22. Cuchens, M. A., and Clem, L. W., 1977, Phylogeny of lymphocyte heterogeneity. II. Differential effects of temperature in fish T-like and B-like cells, Cell. Immunol. 34:219.PubMedCrossRefGoogle Scholar
  23. Cushing, J. E., 1970, Immunology of fish, in: Fish Physiology IV (W. S. Hoar and D. F. Randall, eds.), pp. 465–500, Academic Press, New York.Google Scholar
  24. Davies, H. G., and Haynes, M. E., 1975, Light and electron microscope observations on certain leukocytes in Teleost fish, J. Cell Sci. 17:263.PubMedGoogle Scholar
  25. Davina, J., Hans, M., Rijkers, G. T., Rombout, J. H., Timmermans, L., and van Muiswinkel, W. B., 1980, Lymphoid and non-lymphoid cells in the intestine of cyprinid fish, in: Development and Differentiation of Vertebrate Lymphocytes (J. D. Horton, ed.), pp. 129–140, Elsevier/North-Holland, Amsterdam.Google Scholar
  26. de Kinkelin, P., and Dorson, M., 1973, Interferon production in rainbow trout (Salmo gairdneri) experimentally infected with Egted virus, J. Gen. Virol. 19:125.PubMedCrossRefGoogle Scholar
  27. DeLuca, D., Warr, G. W., and Marchalonis, J. J., 1978, Phylogenetic origins of immune recognition: Lymphocyte surface immunoglobulins and antigen binding in the genus Carassius (Teleostei), Eur. J. Immunol. 8:25.CrossRefGoogle Scholar
  28. Ellis, A. E., 1977, Ontogeny of the immune response in Salmo salar: Histogenesis of the lymphoid organs and appearance of membrane immunoglobulin and mixed leucocyte reactivity, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 225–231, Elsevier/North-Holland, Amsterdam.Google Scholar
  29. Ellis, A. E., and deSousa, M., 1974, Phylogeny of the lymphoid system. I. A study of the fate of circulating lymphocytes in plaice, Eur. J. Immunol. 4:338.PubMedCrossRefGoogle Scholar
  30. Ellis, A. E., and Parkhouse, R. M. E., 1975, Surface immunoglobulins on the lymphocytes of the skate, Raja naevus, Eur. J. Immunol. 5:726.PubMedCrossRefGoogle Scholar
  31. Ellis, A. E., Munroe, A. L., and Roberts, R. J., 1976, Defense mechanisms in fish. I. A study of the phagocytic system and the fate of intraperitoneally injected particulate material in the plaice (Pleuronectes platessa)J. Fish Biol. 8:67.CrossRefGoogle Scholar
  32. Etlinger, H. M., Hodgins, H. O., and Chiller, J. M., 1976, Evolution of the lymphoid system. I. Evidence for lymphocyte heterogeneity in rainbow trout revealed by the organ distribution of mitogenic responses, Immunology 116:1547.Google Scholar
  33. Fange, R., 1968, The formation of eosinophilic granulocytes in the eosophageal lymphomyeloid tissue in the elasmobranchs, Acta Zool. (Stockholm) 58:125.CrossRefGoogle Scholar
  34. Fange, R., and Mattisson, A., 1981, The lymphomyeloid system of the Atlantic nurse shark, Biol. Bull. 160:240.CrossRefGoogle Scholar
  35. Fange, R., and Sundeil, G., 1969, Lymphomyeloid tissues, blood cells and plasma proteins in Chimaera monstrosa (Pisces, Holocephali)Acta Zool. (Stockholm) 50:155.CrossRefGoogle Scholar
  36. Fauve, R. M., 1978, Phagocytes, in: Immunology (J. F. Bach, ed.), p. 92, Wiley, New York.Google Scholar
  37. Ferguson, H. W., 1976, The ultrastructure of plaice (Pleuronectes platessa) leucocytes, J. Fish Biol. 8:132.CrossRefGoogle Scholar
  38. Fiebig, H., and Ambrosius, H., 1976, Cell surface immunoglobulin of lymphocytes in lower vertebrates, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 195–203, Elsevier/North-Holland, Amsterdam.Google Scholar
  39. Fiebig, H., Scherbaum, I., and Ambrosius, H., 1977, Zelloberflachen-immunoglobulin von Lymphozyten des Karpfens (Cyprinus carpio)Acta Biol. Med. Ger. 36:1167.PubMedGoogle Scholar
  40. Finn, J. P., and Nielsen, N. O., 1971, The inflammatory response in rainbow trout, J. Fish Biol. 3:463.CrossRefGoogle Scholar
  41. Finstad, J., and Good, R. A., 1966, Phylogenetic studies of adaptive immune response in the lower vertebrates, in: Phylogeny of Immunity (R. T. Smith, P. A. Miescher, and R. A. Good, eds.), pp. 173–189, University of Florida Press, Gainesville.Google Scholar
  42. Fujii, T., Nakagawa, H., and Murakawa, S., 1979a, Immunity in lamprey. I. Production of haemolytic and haemagglutinating antibody to sheep red blood cells in Japanese lampreys, Dev. Comp. Immunol. 3:441.PubMedCrossRefGoogle Scholar
  43. Fujii, T., Nakagawa, H., and Murakawa, S., 1979b, Immunity in lamprey. II. Antigen-binding response to sheep erythrocytes and hapten in the ammocoete, Dev. Comp. Immunol. 3:609.PubMedCrossRefGoogle Scholar
  44. Fuller, L., Murray, J., and Jensen, J., 1978, Isolation from nurse shark serum of immune 7S antibodies with two different molecular weight H-chains, Immunochemistry 15:251.PubMedCrossRefGoogle Scholar
  45. Gardener, G. R., and Yevich, P. O., 1969, Studies on the blood morphology of three estuarine cyprinodontiform fishes, J. Fish. Res. Board Can. 26:433.CrossRefGoogle Scholar
  46. Good, R. A., and Papermaster, B. W., 1964, Ontogeny and phylogeny of adaptive immunity, Adv. Immunol. 4:1.CrossRefGoogle Scholar
  47. Good, R. A., Finstad, J., Pollara, B., and Gabrielsen, A. E., 1966, Morphological studies on the evolution of the lymphoid tissue among the lower vertebrates, in: Phylogeny of Immunity (R. T. Smith, P. A. Miescher, and R. A. Good, eds.), pp. 149–168, University of Florida Press. Gainesville.Google Scholar
  48. Goss, R. J., 1961, Metabolic antagonists and prolonged survival of scale homografts in Fundulus heteroclitis, Biol. Bull. 121:162.CrossRefGoogle Scholar
  49. Grace, M. F., and Manning, M. J., 1980, Histogenesis of the lymphoid organs in rainbow trout, Salmo gairdneri, Dev. Comp. Immunol. 4:255.PubMedCrossRefGoogle Scholar
  50. Gravell, M., and Malsberger, R. G., 1965, Ann. N.Y. Acad. Sci. 126:55.Google Scholar
  51. Harboe, M., 1963, A note on the absence of immune reactions in myxinoids, in: The Biology of Myxine (A. Brodai and R. Fange, eds.), pp. 456–458, Universitetforlaget, Oslo.Google Scholar
  52. Harisdangkul, V., Kabat, E. A., McDonough, R. J., and Sigel, M. M., 1972a, A protein in normal nurse shark serum which reacts specifically with fructosans. I. Purification and immunochemical characterization, J. Immunol. 108:1244.PubMedGoogle Scholar
  53. Harisdangkul, V., Kabat, E. A., McDonough, R. J., and Sigel, M. M., 1972b, A protein in normal nurse shark serum which reacts specifically with fructosans. II. Physiochemical studies, J. Immunol. 108:1259.PubMedGoogle Scholar
  54. Herbermann, R. B., Nunn, M. E., Holden, H. T., and Lavrin, D. H., 1975, Natural cytotoxic eactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization f effector cells, Int. J. Cancer 16:230.CrossRefGoogle Scholar
  55. Hibbs, J. B., Lambert, L. H., Jr., and Remington, J., 1972, Control of carcinogenesis: A possible role or the activated macrophage, Science 117:998.CrossRefGoogle Scholar
  56. Hildemann, W. H., 1957, Scale homotransplantation in goldfish (Carassius auratus)Ann. N.Y. Acad. Sci. 64:775.PubMedCrossRefGoogle Scholar
  57. Hildemann, W. H., 1972, Phylogeny of transplantation reactivity, in: Transplantation Antigens: Markers of Biological Individuality (B. D. Kahan and R. A. Reisfeld, eds.), pp. 3–73, Academic Press, New York.Google Scholar
  58. Hines, R. A., and Spira, D. T., 1973, Ichthyophthiriasis in the mirror corp II: Leukocyte response, J. Fish Biol. 5:527.CrossRefGoogle Scholar
  59. Hinuma, S., Abo, T., Kumagai, K., and Hata, M., 1980, The potent activity of fresh water fish kidney cells in cell-killing: Characterization and species-distribution of cytotoxicity, Dev. Comp. Immunol. 4:653.PubMedCrossRefGoogle Scholar
  60. Holmgren, N., 1950, On the pronephros and the blood in Myxine glutinosa, Acta Zool. (Stockholm) 31:234.Google Scholar
  61. Huebner, E., and Chee, G., 1978, Histological and ultrastructural specialization of the digestive tract of Hoplosternum thoracatum, J. Morphol. 157:301.CrossRefGoogle Scholar
  62. Isaacs, A., and Lindenmann, J., 1957, Virus interference. I. The interferon, Proc. R. Soc. London Ser. B 147:1258.Google Scholar
  63. Jakowski, S., and Nigrelli, R. F., 1953, Localized response in fish to experimental inflammation caused by pathogenic bacteria, Anat. Rec. 117:526.Google Scholar
  64. Jordan, H., and Speidel, C., 1924, Studies on lymphocytes. II. The origin, function and fate of the lymphocytes in fishes, J. Morphol. 38:529.CrossRefGoogle Scholar
  65. Julius, M. H., Simpson, E., and Herzenberg, L. A., 1973, A rapid method for the isolation of functional thymus-derived murine lymphocytes, Eur. J. Immunol. 3:645.PubMedCrossRefGoogle Scholar
  66. Lopez, D. M., Sigel, M. M., and Lee, J. C., 1974, Phylogenetic studies on T cells. I. Lymphocytes of the shark with differentiated response to PHA and Con A, Cell. Immunol. 10:287.PubMedCrossRefGoogle Scholar
  67. Marcela, A., and Romanovsky, A., 1969, The role of temperature in separate stages of the immune response in anurans, Folia Biol. 15:157.Google Scholar
  68. Mattisson, A. G. M., and Fange, R., 1977, Light and electron microscopic observations on the blood cells of the Atlantic hagfish, Myxine glutinosa, Acta Zool. (Stockholm) 58:205.CrossRefGoogle Scholar
  69. McKinney, E. C., 1974, The cellular immune response of the gar, Ph.D. dissertation, University of Miami.Google Scholar
  70. McKinney, E. C., Ortiz, G., Lee, J. C., Sigel, M. M., Lopez, D. M., Epstein, R. S., and McLeod, T. F., 1976, Lymphocytes of fish: Multipotential or specialized?, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 73–82, Elsevier/North-Holland, Amsterdam.Google Scholar
  71. McKinney, E. C., Smith, S. B., Haines, H. G., and Sigel, M. M., 1977, Phagocytosis by fish cells, J. Reticuloendothelial Soc. 21:89.Google Scholar
  72. McKinney, E. C., McLeod, T. F., and Sigel, M. M., 1981, Allograft rejection in a holostean fish, Lepisosteus platyrhincus, Dev. Comp. Immunol. 5:65.PubMedCrossRefGoogle Scholar
  73. Mackmull, G., and Michels, N. A., 1932, Absorption of colloidal carbon from the peritoneal cavity in the teleost, Tautogolabrus adspersus, Am. J. Anat. 51:5.CrossRefGoogle Scholar
  74. O’Neill, J. G., 1980, Temperature and the primary and secondary immune responses of three teleosts, Salmo trutta, Cyprinus corpis and Notothenia rossii, to MS2 bacteriophage, in: Phylogeny of Immunological Memory (J. J. Manning, ed.), pp. 123–130, Elsevier/North-Holland, Amsterdam.Google Scholar
  75. Ortiz-Muniz, G., and Sigel, M. M., 1968, In vitro synthesis of anti-BSA antibodies by fish lymphoid organs, Bacteriol. Proc. 118:66.Google Scholar
  76. Ortiz-Muniz, G., and Sigel, M. M., 1971, Antibody synthesis in lymphoid organs of two marine teleosts, J. Reticuloendothelial Soc. 9:42.Google Scholar
  77. Pettey, C. L., and McKinney, E. C., 1980, Effect of decreased environmental temperature on spontaneous cytotoxicity in the nurse shark, Fed. Proc. Abstr. 39(Part II):934 (abstr. 3508).Google Scholar
  78. Pettey, C. L., and McKinney, E. C., 1981, Mitogen-induced cytotoxicity in the nurse shark, Dev. Comp. Immunol. 5:53.PubMedCrossRefGoogle Scholar
  79. Pliszka, F., 1939, Weitere Untersuchungen über Immunitatsreacktionen und über Phagozytose bei Karpken, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. Orig. 143:451.Google Scholar
  80. Raff, M. C., 1970, Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence, Immunology 19:637.PubMedGoogle Scholar
  81. Rajewsky, K., Schirrmacher, V., Nase, S., and Jerne, N. K., 1969, The requirement for more than one antigenic determinant for immunogenicity, J. Exp. Med. 129:637.CrossRefGoogle Scholar
  82. Rijkers, G. T., 1980, The immune system of cyprinid fish, Ph.D. thesis, Agricultural University, Wageningen, The Netherlands.Google Scholar
  83. Rijkers, G. T., Teunissen, A. G., Oosterom, R., and van Muiswinkel, W., 1980, The immune system of cyprinid fish. Immunosuppressive effect of the antibiotic Oxytetracycline in carp, Aquaculture 19:177.CrossRefGoogle Scholar
  84. Roberts, R. T. J., 1974, Melanin-containing cells of teleost fish and their relation to disease, in: Anatomic Pathology of Teleost Fish (W. R. Ribelin and G. Migaki, eds.), University of Wisconsin Press, Madison.Google Scholar
  85. Ruben, L. N., and Edwards, B. F., 1980, Phylogeny of the emergence of T-B collaboration in humoral immunity, in: Contemporary Topics in Immunobiology, Vol. 9 (J. J. Marchalonis and N. Cohen, eds.), pp. 55–84, Plenum Press, New York.CrossRefGoogle Scholar
  86. Ruben, L. N., and Selker, E. U., 1975, Polyfunctional antigen-binding specificity in hapten/carrier responses of the newt, Triturus viridescens, Adv. Exp. Biol. Med. 64:387.Google Scholar
  87. Ruben, L. N., Warr, G. W., Decker, J. M., and Marchalonis, J. J., 1977, Phylogenetic origins of immune recognition: Lymphoid heterogeneity and the hapten/carrier effect in goldfish, Carassius auratus, Cell. Immunol. 31:266.PubMedCrossRefGoogle Scholar
  88. Russell, W. J., Taylor, S. A., and Sigel, M. M., 1976, Clearance of bacteriophage in Poikilothermie vertebrates and the effect of temperature, J. Reticuloendothelial Soc. 9:91.Google Scholar
  89. Sailendri, K., 1973, Studies on the development of lymphoid organs and immune responses in the teleost, Tilapia mossambica, Ph.D. thesis, Madurai University.Google Scholar
  90. Sailendri, K., and Muthukkaruppan, VR., 1975, The immune response of the teleost, Tilapia mossambica, to soluble and cellular antigens, J. Exp. Zool. 191:79.CrossRefGoogle Scholar
  91. Schott, C. F., and Merchant, B., 1979, Carrier-specific immune memory to a thymus-dependent antigen in congenitally athymicmice, J. Immunol. 122:1710.PubMedGoogle Scholar
  92. Scottizzi, I., 1932, La milza di Chimaera monstrosa, Arch. Ital. Anat. 29:560.Google Scholar
  93. Shapiro, H. C., 1975, Immunity in decapod crustaceans, Am. Zool. 15:13.Google Scholar
  94. Sigel, M. M., and Clem, L. W., 1966, Immunologic anamnesis in elasmobranchs, in: Phylogeny of Immunity (R. T. Smith, P. A. Miescher, and R. A. Good, eds.), pp. 190–197, University of Florida Press, Gainesville.Google Scholar
  95. Sigel, M. M., Acton, R. T., Evan, E. E., Russell, W. J., Wells, T. G., Painter, B., and Lucas, A., 1968, T2 bacteriophage clearance in the lemon shark, Proc. Soc. Exp. Biol. Med. 128:977.PubMedGoogle Scholar
  96. Sigel, M. M., Lee, J. C., McKinney, E. C., and Lopez, D. M., 1978, Cellular immunity in fish as measured by lymphocyte stimulation, Mar. Fish Rev. 40:6.Google Scholar
  97. Smith, A. M., Wivel, N. A., and Potter, M., 1970, Plasmacytopoiesis in the pronephros of the carps, Anat. Rec. 167:351.PubMedCrossRefGoogle Scholar
  98. Stutzman, W. J., 1967, Combined effects of temperature and immuno-suppresive drug therapy on allograft rejection in goldfish, Transplantation 5:1344.PubMedCrossRefGoogle Scholar
  99. Tarn, M. R., Reddy, A. L., Karp, R. D., and Hildemann, W. H., 1977, Phylogeny of cellular immunity among vertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 98–119, Black-well, Oxford.Google Scholar
  100. Thoenes, G. H., and Hildemann, W. H., 1969, Immunological responses of Pacific hagfish. II. Serum antibody production to soluble antigen, in: Developmental Aspects of Antibody Formation and Structure (J. Sterzl and J. Rina, eds.), pp. 711–722, Czechoslovakia Academy of Sciences, Prague.Google Scholar
  101. von Hagen, F., 1936, Die Wichtigsten Endokrinen des Flussaals, Thyreoidea, Thymus, und Hypophyse im Lebenszyklus des Flussaals (Anguilla vulgaris) nebst einiger Untersuchunger über das chromophile und chromophobe Kolloid der Thyreoidea, Zool. Jahrb. 61:467.Google Scholar
  102. Wardle, C. S., 1971, New observations on the lymph system of the plaice, Pleuronectes platessa, and other teleosts, J. Mar. Biol. Assoc. U.K. 51:977.CrossRefGoogle Scholar
  103. Warr, G. W., and Marchalonis, J. J., 1977, Lymphocyte surface immunoglobulin of the goldfish differs from its serum counterpart, Dev. Comp. Immunol. 1:15.PubMedCrossRefGoogle Scholar
  104. Warr, G. W., DeLuca, D., and Marchalonis, J. J., 1976, Phylogenetic origins of immune recognition: Lymphocyte surface immunoglobulins in the goldfish, Carassius auratus, Proc. Natl. Acad. Sci. USA 73:2476.CrossRefGoogle Scholar
  105. Warr, G. W., DeLuca, D., Decker, J. M., Marchalonis, J. J., and Ruben, L. N., 1977, Lymphoid heterogeneity in teleost fish: Studies on the genus Carassius, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 241–248, Elsevier/North-Holland, Amsterdam.Google Scholar
  106. Watson, J., Trenkner, E., and Cohn, M., 1973, The use of bacterial LPS to show that two signals are required for the induction of antibody synthesis, J. Exp. Med. 138:699.PubMedCrossRefGoogle Scholar
  107. Watson, L. J., Schechmeister, I. L., and Jackson, L. L., 1963, The haematology of goldfish (Carassius auratus)Cytologia 28:118.CrossRefGoogle Scholar
  108. Weinreb, E. L., 1963, Studies on the fine structure of Teleost blood cells. I. Peripheral blood, Anat. Rec. 147:219.PubMedCrossRefGoogle Scholar
  109. Weinreb, E. L., and Weinreb, S., 1969, A study of experimentally induced endocytosis in a teleost. I. Light microscopy of peripheral blood cell response, Zoologica (N.Y.) 54:25.Google Scholar
  110. Weiss, E., and Avtalion, R. R., 1977, Regulatory effect of temperature and antigen upon immunity in ectothermic vertebrates. II. Primary enhancement of anti-hapten antibody response at high and low temperatures, Dev. Comp. Immunol. 1:93.PubMedCrossRefGoogle Scholar
  111. West, W. H., Cannon, G. B., Kay, H. D., Bonnard, G. D., and Herberman, R. B., 1977, Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: Characterization of effector cells, J. Immunol. 118:355.PubMedGoogle Scholar
  112. Wojdani, A., Katz, E., Shahraboni, R., and Avtalion, R. R., 1979, Influence of environmental temperature on the fate of soluble and bacterial antigens in carp. Am. Zool. 19:932.Google Scholar
  113. Yamaga, K., Etlinger, H. M., and Kubo, R. T., 1977, Partial characterization of membrane immunoglobulins on rainbow trout lymphocytes, in: Immune System: Genetics and Regulation (E. E. Sercarz, L. A. Herzenberg, and C. F. Fox, eds.), pp. 297–304, Academic Press, New York.Google Scholar
  114. Yocum, D., Cuchens, M., and Clem, L. W., 1975, The hapten/carrier effect in teleost fish, J. Immunol. 114:925.PubMedGoogle Scholar
  115. Yokoyama, H. O., 1960, Studies on the origin, development and seasonal variations in the blood cells of the perch, Perca flavescens, J. Wildl. Dis. 6:1.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Larry J. Mc Cumber
    • 1
  • M. Michael Sigel
    • 1
  • Richard J. Trauger
    • 1
  • Marvin A. Cuchens
    • 2
  1. 1.Department of Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA
  2. 2.Department of MicrobiologyUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations