Advertisement

Invertebrate Defense Systems an Overview

  • Edwin L. Cooper

Abstract

Invertebrate immunity, a vast, still relatively unexplored, but exciting area, offers many reasons for sustained analysis. First, we will continue to reveal immune reactions as biological phenomena characteristic of all living species. Second, we are interested in mechanisms—the quest for cause-and-effect relationships such as the possible evolutionary pressures causing immunogenesis. Third, we can search for origins of vertebrate immune responses by experimenting with ancestral animals. A fourth, perhaps more practical reason is to question the utility of any immune system—this we do by comparing immune capabilities, whether primitive or advanced, invertebrate or vertebrate. In other words, the question of why the immune system evolved to its present status in humans can be answered only by understanding less complex immune systems.

Keywords

Major Histocompatibility Complex Ehrlich Ascites Tumor Cell Rosette Formation Axial Organ Foreign Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, R. T., Evans, E. E., Weinheimer, P. F., Cooper, E. L., Campbell, R. D., Prowse, R. H., Bizot, M., Stewart, J. E., and Fuller, G. M., 1972, Invertebrate Immune Mechanisms, MSS Information Corporation, New York.Google Scholar
  2. Amirante, G. A., and Mazzalai, F. G., 1978, Synthesis and localization of hemagglutinins in hemo-cytes of the cockroach Leucophaea maderae L., Dev. Comp. Immunol 2:735.PubMedCrossRefGoogle Scholar
  3. Anderson, R. S., 1976, Expression of receptors by insect macrophages, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), Elsevier/North-Holland, Amsterdam.Google Scholar
  4. Anderson, R. S., 1977, Rosette formation by insect macrophages: Inhibition by cytochalasin B, Cell. Immunol 29:331.PubMedCrossRefGoogle Scholar
  5. Balls, M., and Ruben, L. N., 1976, Phylogeny of neoplasia and immune reactions to tumors, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 167–208, Blackwell, Oxford.Google Scholar
  6. Bang, F. B., 1975, Phagocytosis in invertebrates, in: Invertebrate Immunity (K. Maramorosch and R. Shope, eds.), pp. 137–151, Academic Press, New York.Google Scholar
  7. Bayne, C. J., 1977, Molluscan immunobiology: The elevation of responses, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 67–74, Elsevier/North-Holland, Amsterdam.Google Scholar
  8. Boiledieu, D., and Valembois, P., 1977a, Natural cytotoxic activity of sipunculid leukocytes on allogenic and xenogenic erythrocytes, Dev. Comp. Immunol. 1:207.PubMedCrossRefGoogle Scholar
  9. Boiledieu, D., and Valembois, P., 1977b, The mechanism of leukocyte cytotoxicity studied by time-lapse microcinematography and its inhibition: An example of in vitro specific recognition in invertebrates, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 51–57, Elsevier/North-Holland, Amsterdam.Google Scholar
  10. Boman, H. G., Nilsson-Faye, I., Paul, K., and Rasmuson, T., Jr., 1974, Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae, Infect. Immun. 10:136.PubMedGoogle Scholar
  11. Burnet, F. M., 1974, Invertebrate precursors to immune responses, in: Contemporary Topics in Immunobiology, Vol. 4 (E. L. Cooper, ed.), pp. 13–24, Plenum Press, New York.CrossRefGoogle Scholar
  12. Chadwick, J. M., and Aston, W. P., 1978, An overview of insect immunity, in: Animal Models of Comparative and Developmental Aspects of Immunity and Disease (M. E. Gershwin and E. L. Cooper, eds.), pp. 1–14, Pergamon Press, Elmsford, N.Y.Google Scholar
  13. Cohen, N., 1975, Phylogeny of lymphocyte structure and function, Am. Zool. 15:119.Google Scholar
  14. Cooper, E. L., 1973a, Earthworm coelomocytes: Role in understanding the evolution of cellular immunity. I. Formation of monolayers and cytotoxicity, in: Proceedings, III International Colloquium on Invertebrate Tissue Culture (J. Rehácek, D. Blaskovic, and W. F. Hink, eds.), pp. 381–404, Publishing House of the Slovak Academy of Science, Bratislava.Google Scholar
  15. Cooper, E. L., 1973b, Evolution of cellular immunity, in: Non-specific Factors Influencing Host Resistance (W. Braun and J. Ungar, eds.), pp. 11–23, Karger, Basel.Google Scholar
  16. Cooper, E. L. (ed.), 1974a, Invertebrate immunology, in: Contemporary Topics in Immunobiology, Vol. 4, Plenum Press, New York.Google Scholar
  17. Cooper, E. L., 1974b, Phylogeny of leukocytes: Earthworm coelomocytes in vitro and in vivo, in: Lymphocyte Recognition and Effector Mechanisms, pp. 155–162, Academic Press, New York.Google Scholar
  18. Cooper, E. L., 1975a, Characteristics of CMI and memory in annelids, Adv. Exp. Med. Biol. 64:127.PubMedGoogle Scholar
  19. Cooper, E. L. (ed.), 1975b, Developmental immunology, Am. Zool. 15:1.Google Scholar
  20. Cooper, E. L., 1976a, Comparative Immunology, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  21. Cooper, E. L., 1976b, Immunity and neoplasia in mollusks, Isr. J. Med. Sci. 12:479.PubMedGoogle Scholar
  22. Cooper, E. L., 1976c, The earthworm coelomocyte: A mediator of cellular immunity, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 9–18, Elsevier/ North-Holland, Amsterdam.Google Scholar
  23. Cooper, E. L., 1976d, Cellular recognition of allografts and xenografts in invertebrates, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 36–79, Blackwell, Oxford.Google Scholar
  24. Cooper, E. L., 1976e, Evolution of blood cells, Ann. Immunol. (Inst. Pasteur) 127C:817.Google Scholar
  25. Cooper, E. L., 1976f, The earthworm coelomocyte: A mediator of cellular immunity, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), Elsevier/North-Holland, Amsterdam.Google Scholar
  26. Cooper, E. L., 1977a, Preface, in: Comparative Pathobiology (L. Bulla, Jr. and T. Cheng, eds.), pp. ix–xii, Plenum Press, New York.Google Scholar
  27. Cooper, E. L. (ed.), 1977b, Developmental and Comparative Immunology 1, Pergamon Press, Elmsford, N.Y.Google Scholar
  28. Cooper, E. L., 1977c, Evolution of cell mediated immunity, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), Elsevier/North-Holland, Amsterdam.Google Scholar
  29. Cooper, E. L., 1979, Properties of coelomocyte membranes, in: Protides of the Biological Fluids (H. Peeters, ed.), pp. 581–584, Pergamon Press, Elmsford, N.Y.Google Scholar
  30. Cuénot, L., 1891, Etudes sur le sang et les glands lymphatiques dans la série animale (2e parties: Invertébrés), Arch. Zool. Exp. Gen. 9:13.Google Scholar
  31. Cuénot, L., 1897, Les globules sanguins et les organes lymphoides des invertébrés, Arch. Anat. Microsc. Morphol. Exp. 1:153.Google Scholar
  32. Cunningham, A. J., 1978, A comparison of the immune strategy of vertebrates and invertebrates, Dev. Comp. Immunol. 2:243.PubMedCrossRefGoogle Scholar
  33. Cushing, J., 1977, Immunology and the processes for evolution, Dev. Comp. Immunol. 1:65.PubMedCrossRefGoogle Scholar
  34. Dales, R. P., 1979, Defense of invertebrates against bacterial infection, J. R. Soc. Med. 72:688.PubMedGoogle Scholar
  35. Dawe, C. J., and Harshbarger, J. C. (eds.), 1969, A Symposium on Neoplasms and Related Disorders of Invertebrate and Lower Vertebrate Animals, Natl. Cancer Inst. Monogr. 31.Google Scholar
  36. Du Pasquier, L., and Cooper, E. L., 1974, Primitive vertebrate immunology, Prog. Immunol. II 2:297.Google Scholar
  37. Duprat-Châteaureynaud, P., Du Pasquier, L., and Valembois, P., 1970, Colloque sur les réactions immunitaires chez les invertébrés, Laboratoire de Zoologie (Université de Bordeaux) et Centre de Morphologie Expérimentale du CNRS.Google Scholar
  38. Ermak, T., 1976, Hematogenic tissues of tunicates, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 45–56, Elsevier/North-Holland, Amsterdam.Google Scholar
  39. Faye, I., Pye, A., Rasmuson, T., Jr., Boman, H. G., and Boman, I. A., 1975, Insect immunity. II. Simultaneous induction of antibacterial activity and selective synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia, Infect. Immun. 12:1426.Google Scholar
  40. Freeman, G., 1970, The reticuloendothelial system of tunicates, J. Reticuloendothelial Soc. 7:183.Google Scholar
  41. Garland, J. M., 1978, The T-cell paradigm: A philosophical view of immunology, Dev. Comp. Immunol. 2:39.PubMedCrossRefGoogle Scholar
  42. Geddes, P., 1880, Observations sur le fluide périviscéral des oursins, Arch. Zool. Ser. 8:483.Google Scholar
  43. George, W. C., 1926, The histology of the blood of Perophora viridis (ascidian), J. Morphol 41:31.CrossRefGoogle Scholar
  44. George, W. C., 1939, A comparative study of the blood of tunicates, Q. J. Microsc. Sci. 81:391.Google Scholar
  45. Hall, J. L., and Rowlands, D. T., Jr., 1974a, Heterogeneity of lobster agglutinins. I. Purification and physicochemical characterization, Biochemistry 13:821.PubMedCrossRefGoogle Scholar
  46. Hall, J. L., and Rowlands, D. T., Jr., 1974b, Heterogeneity of lobster agglutinins. II. Specificity of agglutinin-erythrocyte binding, Biochemistry 13:828.PubMedCrossRefGoogle Scholar
  47. Hammarström, S., and Kabat, E. A., 1971, Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia, Biochemistry 10:1684.Google Scholar
  48. Hammarström, S., Hellstrom, U., Perlmann, P., and Dillner, M. L., 1973, A new surface marker on T lymphocytes of human peripheral blood, J. Exp. Med. 138:1270.PubMedCrossRefGoogle Scholar
  49. Hardy, S. W., Fletcher, T. C., and Olafsen, J. A., 1977, Aspects of cellular and humoral defense mechanisms in the Pacific oyster, Crassostrea gigas, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 59–66, Elsevier/North-Holland, Amsterdam.Google Scholar
  50. Hetzel, H. R., 1965, Studies on holothurian coelomocytes. II. The origin of coelomocytes and the formation of brown bodies, Biol. Bull. 128:102.CrossRefGoogle Scholar
  51. Hildemann, W. H., and Benedict, A. A. (eds.), 1975, Immunologic Phylogeny, Adv. Exp. Med. Biol. 64, Plenum Press, New York.Google Scholar
  52. Hildemann, W. H., and Clem, L. W., 1971, Phylogenetic aspects of immunity, Prog. Immunol. I: 1305.Google Scholar
  53. Hildemann, W. H., and Cooper, E. L. (eds.), 1970, Phylogeny of transplantation reactions, Transplant. Proc. 2:179.Google Scholar
  54. Hildemann, W. H., and Cooper, E. L., 1977, Phylogeny, Prog. Immunol. III:138.Google Scholar
  55. Hildemann, W. H., and Reddy, A. L., 1973, Phylogeny of immune responsiveness: Marine invertebrates, Fed. Proc. 32:2188.PubMedGoogle Scholar
  56. Hildemann, W. H., and Uhlenbruck, G., 1974, Invertebrate immunology, Prog. Immunol. II 2:292.Google Scholar
  57. Holland, N. D., Phillips, J. H., Jr., and Giese, A. C., 1965, An autoradiographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus), Biol. Bull. 128:259.CrossRefGoogle Scholar
  58. Hood, L., Campbell, J. H., and Elgin, S. C. R., 1975, The organization, expression, and evolution of antibody genes and other multigene families, Annu. Rev. Genet. 9:305.PubMedCrossRefGoogle Scholar
  59. Hostetter, R. K., and Cooper, E. L., 1972, Coelomocytes as effector cells in earthworm immunity, Immunol. Commun. 1:155.PubMedGoogle Scholar
  60. Hostetter, R. K., and Cooper, E. L., 1973, Cellular anamnesis in earthworms, Cell. Immunol. 9:384.PubMedCrossRefGoogle Scholar
  61. Hostetter, R. K., and Cooper, E. L., 1974, Earthworm coelomocyte immunity, in: Contemporary Topics in Immunobiology (E. L. Cooper, ed.), Vol. 4, pp. 91–107, Plenum Press, New York.CrossRefGoogle Scholar
  62. Jerne, N. K., 1971, The somatic generation of immune recognition, Eur. J. Immunol. 1:1.PubMedCrossRefGoogle Scholar
  63. Jones, K., 1977, The need for a comparative approach to immunobiology, Dev. Comp. Immunol. 1:279.CrossRefGoogle Scholar
  64. Jordan, H. E., 1938, Comparative hematology, in: Handbook of Hematology (H. Downey, ed.), pp. 700–862, Harper & Row (Hoeber), New York.Google Scholar
  65. Jordan, H., and Reynolds, B. D., 1933, The blood cells of the trematode, Diplodiscus temperatus, J. Morphol. 55:119.CrossRefGoogle Scholar
  66. Karp, R. D., 1976, Specific immunoreactivity in echinoderms, in: Phytogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), p. 27, Elsevier/North-Holland, Amsterdam.Google Scholar
  67. Kindred, J. E., 1929, The leucocytes and leucocytopoietic organs of an oligochaete, Pheretima indica (Horst), J. Morphol. 47:435.CrossRefGoogle Scholar
  68. Klein, J., 1977, Evolution and function of the major histocompatibility system: Facts and speculation, in: The Major Histocompatibility System in Man and Animals (D. Gotze, ed.), pp. 340–378, Springer-Verlag, Berlin.Google Scholar
  69. Kolb, H., 1977, On the phylogenetic origin of the immune system: A hypothesis, Dev. Comp. Immunol. 1:193.PubMedCrossRefGoogle Scholar
  70. Kollmann, M., 1908, Recherches sur les leucocytes et le tissue lymphoïde des Invertébrés, Ann. Sci. Nat. Zool. Biol. Anim. Ser. 9 8:1.Google Scholar
  71. Kubo, R. T., Zimmerman, B., and Grey, H. M., 1973, Phylogeny of immunoglobulins, in: The Antigens (M. Sela, ed.), pp. 417–477, Academic Press, New York.Google Scholar
  72. Leclerc, M., Redziniak, G., Panijel, J., and El Lababidi, M., 1977a, Reactions induced in vertebrates by invertebrate cell suspensions. I. Specific effects of sea star axial organ cells injection, Dev. Comp. Immunol. 1:299.PubMedCrossRefGoogle Scholar
  73. Leclerc, M., Redziniak, G., Panijel, J., and El Lababidi, M., 1977b, Reactions induced in vertebrates by invertebrate cell suspensions. II. Non-adherent axial organ cells as effector cells, Dev. Comp. Immunol. 1:311.PubMedCrossRefGoogle Scholar
  74. Lemmi, C. A., 1975a, Tissue graft rejection mechanisms in the earthworm Lumbricus terrestris: Specific induction of coelomocyte proliferation, Diss. Abstr. Int. B 10:4960.Google Scholar
  75. Lemmi, C. A., 1975b, Specific induction of coelomocyte proliferation in earthworms, Anat. Rec. 181:409.Google Scholar
  76. Lie, K. J., and Heyneman, D., 1977, Studies on resistance in snails: Interference by non-irradiated echinostome larvae with natural resistance to Schistosoma mansoni in Biomphalaria glabrata, J. Invertebr. Pathol. 29:118.CrossRefGoogle Scholar
  77. Manning, M. J., and Turner, R. J., 1976, Comparative Immunobiology, p. 184, Wiley, New York.Google Scholar
  78. Marchalonis, J. J. (ed.), 1976, Comparative Immunology, p. 470, Blackwell, Oxford.Google Scholar
  79. Marchalonis, J. J., 1977, Immunity in Evolution, Arnold, London.Google Scholar
  80. Marchalonis, J. J., and Warr, G. W., 1978, Phylogenetic origins of immune recognition: Naturally occurring DNP-binding molecules in chordate sera and hemolymph, Dev. Comp. Immunol. 2:443.PubMedCrossRefGoogle Scholar
  81. Marks, D. H., Stein, E. A., and Cooper, E. L., 1979, Chemotactic attraction to foreign tissue, Dev. Comp. Immunol. 3:277.PubMedCrossRefGoogle Scholar
  82. McKay, D., and Jenkin, C. R., 1970, Immunity in the invertebrates: The role of serum factors in phagocytosis of erythrocytes by haemocytes of the fresh-water crayfish, Parachaeraps bicarinatus, Aust. J. Exp. Biol. Med. Sci. 48:139.CrossRefGoogle Scholar
  83. Nappi, A. J., 1978, Immune reactions of invertebrates to foreign materials, in: Animal Models of Comparative and Developmental Aspects of Immunity and Disease (M. E. Gershwin and E. L. Cooper, eds.), pp. 15–24, Pergamon Press, Elmsford, N.Y.Google Scholar
  84. Overton, J., 1966, The fine structure of blood cells in the ascidian Perophora viridis, J. Morphol. 119:305.CrossRefGoogle Scholar
  85. Panijel, J., and Liacopoulos, F. (eds.), 1972, Phylogenic and Ontogenic Study of the Immune Response and Its Contribution to the Immunologic Theory, INSERM, Paris.Google Scholar
  86. Parish, C. R., 1977, Simple model for self-non-self discrimination in invertebrates, Nature (London) 261:711.CrossRefGoogle Scholar
  87. Pérès, J. M., 1943, Recherches sur le sang et les organes neuraux des tuniciers, Ann. Inst. Oceanogr. (Monaco) 21:229.Google Scholar
  88. Prenant, M., 1922, Recherches sur le parenchyme des plathelminthes: Essai d’histologie comparée, in: Librairie Octave Doin (G. Doin, ed.), p. 174, Paris.Google Scholar
  89. Prendergast, R. A., and Suzuki, M., 1970, Invertebrate protein stimulating mediators of delayed hypersensitivity, Nature (London) 227:277.PubMedCrossRefGoogle Scholar
  90. Rabinovitch, M., and De Stefano, M. J., 1970, Interactions of red cells with phagocytes of wax-moth (Galleria mellonella L.) and mouse, Exp. Cell Res. 59:272.PubMedCrossRefGoogle Scholar
  91. Rasmussen, T., and Boman, H. G., 1977, The assay and the specificity problem in insect immunity, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 83–90, Elsevier/ North-Holland, Amsterdam.Google Scholar
  92. Reinisch, C. L., and Bang, F. B., 1971, Cell recognition: Reaction of the sea star, Asterias vulgaris, to the injection of amoebocytes of sea urchin, Arbacia punctulata, Cell. Immunol. 2:496.CrossRefGoogle Scholar
  93. Renwrantz, L. R., and Cheng, T. C., 1977, Identification of agglutinin receptors on hemocytes of Helix pomatia, J. Invertebr. Pathol. 29:88.CrossRefGoogle Scholar
  94. Roch, P., and Valembois, P., 1977, Physiological heterogeneity and cellular differentiation of earthworm leukocytes studied by concanavalin A, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), Elsevier/North-Holland, Amsterdam.Google Scholar
  95. Roch, P., and Valembois, P., 1978, Evidence for concanavalin A receptors and their redistribution on lumbricid leukocytes, Dev. Comp. Immunol. 2:51.PubMedCrossRefGoogle Scholar
  96. Roch, P. H., Valembois, P., and Du Pasquier, L., 1975, Response of earthworm leukocytes to concanavalin A and transplantation antigens, Adv. Exp. Med. Biol. 64:44.Google Scholar
  97. Rothenberg, B. E., 1978, The self-recognition concept: An active function for the molecules of the MHC based on the complementary interaction of protein and carbohydrate, Dev. Comp. Immunol. 2:23.PubMedCrossRefGoogle Scholar
  98. Schreffler, D. C., David, C.S., Passmore, H. C., and Klein, J., 1971, Genetic organization and evolution of the mouse H-2 region: A duplication model, Transplant. Proc. 3:176.Google Scholar
  99. Simpson, G. G., 1960, The Meaning of Evolution: A Study of the History of Life and of Its Significance for Man, p. 365, Yale University Press, New Haven.Google Scholar
  100. Sloan, B., Yocum, C., and Clem, L. W., 1975, Recognition of self from non-self in crustaceans, Nature (London) 258:521.PubMedCrossRefGoogle Scholar
  101. Solomon, J. B., and Horton, J. D. (eds.), 1977, Developmental Immunobiology, Elsevier/North-Holland, Amsterdam.Google Scholar
  102. Stang-Voss, C., 1974, On the ultrastructure of invertebrate hemocytes: An interpretation of their role in comparative hematology, in: Contemporary Topics in Immunobiology, Vol. 4 (E. L. Cooper, ed.), p. 65, Plenum Press, New York.CrossRefGoogle Scholar
  103. Theodor, J. L., and Acton, R. T., 1974, Primitive recognition systems, Prog. Immunol. II 2:287.Google Scholar
  104. Toupin, J., and Lamoureaux, G., 1976a, Coelomocytes of earthworms: The T-cell-like rosette, Cell. Immunol. 26:127.PubMedCrossRefGoogle Scholar
  105. Toupin, J., and Lamoureaux, G., 1976b, Mitogen responsiveness of Lumbricus terrestris coelomocytes, in: Phylongeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 19–25, Elsevier/North-Holland, Amsterdam.Google Scholar
  106. Tyson, C. J., and Jenkin, C. R., 1974, The cytotoxic effect of haemocytes from the crayfish (Parachaeraps bicarinatus) on tumor cells of vertebrates, Aust. J. Exp. Biol. Med. Sci. 52:915.CrossRefGoogle Scholar
  107. Uhlenbruck, G., and Steinhausen, G., 1977, Tridacnins: Symbiosis-profit or defense purpose?, Dev. Comp. Immunol. 1:183.PubMedCrossRefGoogle Scholar
  108. Vaith, P., Müller, W. E. G., and Uhlenbruck, G., 1979a, On the role of D-glucuronic acid in the aggregation of cells from the marine sponge Geodia cydonium, Dev. Comp. Immunol. 3:259.CrossRefGoogle Scholar
  109. Vaith, P., Uhlenbruck, G., Müller, W. E., and Holz, G., 1979b, Sponge aggregation factor and sponge hemagglutinin: Possible relationships between two different molecules, Dev. Comp. Immunol. 3:399.PubMedCrossRefGoogle Scholar
  110. Valembois, P., and Roch, P., 1977, Identification par autoradiographie des leucocytes stimulés à la suite de plaies ou de greffes chez un ver de terre, Biol. Cell. 28:81.Google Scholar
  111. Vethamany, V. G., and Fung, M., 1972, The fine structure of coelomocytes of the sea urchin Strongylocentrotus dröbachiensis, Can. J. Zool. 50:77.CrossRefGoogle Scholar
  112. Waksman, B. H., 1979, Overview: Biology of the lymphokines, in: Biology of the Lymphokines (S. Cohen, E. Pick, and J. J. Oppenheim, eds.), pp. 585–616, Academic Press, New York.Google Scholar
  113. Warr, G. W., 1978, On T cells in invertebrates, Dev. Comp. Immunol. 2:555.PubMedCrossRefGoogle Scholar
  114. Weiss, D. W., 1976, Central problems in tumor immunology (Introduction and Preface), Isr. J. Med. Sci. 12:281.PubMedGoogle Scholar
  115. Wright, R. K., 1976, Phylogenetic origin of the vertebrate lymphocyte and lymphoid tissue, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), Elsevier/ North-Holland, Amsterdam.Google Scholar
  116. Wright, R. K., and Cooper, E. L., 1975, Immunological maturation in the tunicate Ciona intestinalis, Am. Zool. 15:21.Google Scholar
  117. Wright, R. K., and Cooper, E. L. (eds.), 1976, Phylogeny of Thymus and Bone Marrow-Bursa Cells, p. 325, Elsevier/North-Holland, Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Edwin L. Cooper
    • 1
  1. 1.Department of Anatomy, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations