Carbon Analysis of Atmospheric Aerosols Using Grale and Reflectance Analysis

  • E. S. Macias
  • L.-C. Chu


Techniques for total and elemental carbon analysis of atmospheric aerosols are described. Total carbon is determined using the gamma ray analysis of light elements (GRALE) technique which employs the in-beam measurement of γ rays emitted during the inelastic scattering of protons. Elemental carbon is determined by light reflectance. Extensive calibrations of both methods have been carried out. The use of the methods with teflon as well as glass and quartz filters is described.


Total Carbon Elemental Carbon Glass Fiber Filter Atmospheric Aerosol Carbon Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Huntzicker, R. L. Johnson, J. J. Shah and R. A. Cary, These Proceedings.Google Scholar
  2. 2.
    R. K. Stevens, T. G. Dzubay, W. A. McClenny and M. A. Mason, These Proceedings.Google Scholar
  3. 3.
    H. E. Gerber, These Proceedings.Google Scholar
  4. 4.
    E. S. Macias, C. D. Radcliffe, C. W. Lewis and C. R. Sawicki, Analy. Chem., Vol. 50 (1978), p. 1120.CrossRefGoogle Scholar
  5. 5.
    E. S. Macias, R. Delumyea, L.-C. Chu, H. Appleman, C. D. Radcliffe and L. Staley, “The Determination, Speciation and Behavior of Particulate Carbon,” Proceedings of the Conference on Carbonaceous Particles in the Atmosphere, CONF-7803101, Berkeley, California, (1979), pp. 70–78.Google Scholar
  6. 6.
    R. G. Delumyea L.-C. Chu and E. S. Macias, Atmos. Envir., Vol. 14 (1980), p. 647.CrossRefGoogle Scholar
  7. 7.
    L.-C. Chu, R. G. Delumyea and E. S. Macias, Anal. Chem. (Submitted for publication).Google Scholar
  8. 8.
    C. W. Lewis and E. S. Macias, Atmos. Envir., Vol. 14 (1980), p. 185.CrossRefGoogle Scholar
  9. 9.
    L.-C. Chu and E. S. Macias, “Carbonaceous Urban Aerosol-Primary or Secondary.” Chemical Composition ofAtmospheric Aerosol: Source/Air Quality Relationships, (Edited by E. S. Macias and P. K. Hopke) ACS Books, Washington, DC (in press).Google Scholar
  10. 10.
    E. S. Macias, J. O. Zwicker, J. R. Ouimette, S. V. Hering, S. K. Friedlander, T. A. Cahill, G. A. Kuhlmey and L. W. Richards, Atmos. Envir. (Submitted for publication).Google Scholar
  11. 11.
    G. R. Cass, P. M. Boone and E. S. Macias, These Proceedings.Google Scholar
  12. 12.
    M. H. Conklin, G. R. Cass, L.-C. Chu, and E. S. Macias, “Wintertime carbonaceous aerosols in Los Angeles: an exploration of the role of soot,” Chemical Composition of Atmospheric Aerosol: Source/Air Quality Relationships, (Edited by E. S. Macias and P. K. Hopke) ACS Books, Washington, DC (in press).Google Scholar
  13. 13.
    J. R. Ouimette, “Aerosol Chemical Species Contributions to the Extinction Coefficient,” California Institute of Technology. Ph.D Thesis, 1980.Google Scholar
  14. 14.
    E. S. Macias and R. B. Husar, “A review of atmospheric particulate mass measurements via the beta attenuation technique.” In Fine Particles: Aerosol Generation, Measurement, Sampling and Analysis, ( Edited by B. Y.H. Liu ), (1976), pp. 535–564.Google Scholar
  15. 15.
    E. S. Macias and R. B Husar, Envir. Sci. Technol., Vol. 10 (1976), p. 904.CrossRefGoogle Scholar
  16. 16.
    T. G. Dzubay, R. K. Stevens and C. M. Peterson, X Ray Fluorescence Analysis of Environmental Samples, (Edited by T. G. Dzubay) Ann Arbor Science, Ann Arbor, Michigan, 1977.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. S. Macias
    • 1
  • L.-C. Chu
    • 1
  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations