Advertisement

Deposition of Particulate Elemental Carbon from the Atmosphere

  • J. A. Ogren

Abstract

Elemental carbon is removed from the atmosphere by both precipitation scavenging and dry deposition at the Earth’s surface. Measurements of the wet removal flux may be obtained from optical or chemical analyses of the insoluble material in precipitation samples. Sampling considerations include losses to the walls of the sampling system, contamination from fugitive dust, pollen, or biological growth in the sample, and extraction of the carbon on to a suitable filter medium. An estimate of the dry deposition flux may be obtained by exposing a clean surface to the atmosphere but not to precipitation, washing with water subsequent to collection, and then analyzing in the same manner as precipitation samples. This may not be representative of the true flux because of the wide variety of surfaces to which deposition may occur, but does provide an estimate of the contribution of dry deposition to the precipitation samples.

Preliminary samples collected in Washington State suggest that precipitation scavenging is an important removal mechanism, and that atmospheric lifetimes for elemental carbon are comparable to those reported for sulfate aerosols. This implies that the removal mechanisms for the two aerosol types are similar, and is consistent with the hypothesis that sulfates and elemental carbon are mixed within the same particles in the atmosphere.

Keywords

Elemental Carbon Deposition Velocity Settling Velocity Deposition Flux Precipitation Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rosen, A. D. A. Hansen, L. Gundel and T. Novakov, App. Optics, Vol. 24 (1978), p. 3859.CrossRefGoogle Scholar
  2. 2.
    R. E. Weiss, A. P. Waggoner, R. J. Charlson, D. L. Thorsell, J. S. Hall and L. A. Riley, “Studies of the Optical, Physical, and Chemical Properties of Light Absorbing Aerosols, ” Proc. Conf. on Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.Google Scholar
  3. 3.
    C. Brosset, Ambio, Vol. 5 (1976), p. 157.Google Scholar
  4. 4.
    B. D. Crittenden and R. Long, “The Mechanisms of Formation of Polynuclear Aromatic Compounds in Combustion Systems,” in Carcinogenesis, Vol. 1. Polynuclear Aromatic Hydrocarbons: Chemistry, Metabolism, and Carcinogenesis, edited by R. I. Freudenthal and P. W. Jones, Raven Press, New York, 1976.Google Scholar
  5. 5.
    T. C. Grenfell, D. K. Perovich and J. A. Ogren (1981) “Spectral Albedos of an Alpine Snowpack,” Cold Regions Sci. Technol. (In press).Google Scholar
  6. 6.
    W. G. N. Slinn, L. Hasse, B. B. Hicks, A. W. Hogan, D. Lal, P. S. Liss, K. O. Munnich, G. A. Sehmel and O. Vittori, Atmos. Environ., Vol. 12 (1978), p. 2055.CrossRefGoogle Scholar
  7. 7.
    R. J. Charlson and M. J. Pilat, J. App. Met., Vol. 8 (1969), p. 1001.CrossRefGoogle Scholar
  8. 8.
    W. G. N. Slinn, J. Wat. Air Soil Poll., Vol. 7 (1977), p. 513.Google Scholar
  9. 9.
    G. A. Sehmel and S. L. Sutter, J. Rechs. Atmos., Vol. 3 (1974), p. 911.Google Scholar
  10. 10.
    U. Möller and G. Shumann, J. Geophys. Res., Vol. 75 (1970), p. 3013.CrossRefGoogle Scholar
  11. 11.
    G. L. Ter Haar, D. L. Lenane, J. N. Hu and M. Brandt, Air Pollut. Control Assoc., Vol. 22 (1972), p. 39Google Scholar
  12. 12.
    S.-G. Chang, R. Brodzinsky, R. Toossi, R. P. Markowitz and T. Novakov, “Catalytic Oxidation of SO2 on Carbon in Aqueous Solution,” Proc. Conf. on Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.Google Scholar
  13. 13.
    L. Granat, Atmos. Environ., Vol. 12 (1978), p. 413.CrossRefGoogle Scholar
  14. 14.
    W. R. Pierson, “Particulate Organic Matter and Total Carbon from Vehicles on the Raod,” Proc. Conf. on Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.Google Scholar
  15. 15.
    S. K. Friedlander, Smoke, Dust and Haze, Wiley, New York, 1977.Google Scholar
  16. 16.
    A. P. Waggoner, M. B. Baker and R. J. Charlson, App. Optics, Vol. 12 (1973), p. 896.CrossRefGoogle Scholar
  17. 17.
    M. Sadler, R. J. Charlson, H. Rosen and T. Novakov, Atmos. Environ., (In press).Google Scholar
  18. 18.
    S. H. Cadle, P. J. Groblicki and D. P. Stroup, Anal. Chem., Vol. 52 (1980), p. 2201.CrossRefGoogle Scholar
  19. 19.
    C. Lin, M. Baker and R. J. Charlson, App. Optics, Vol. 12 (1973), p. 1356.CrossRefGoogle Scholar
  20. 20.
    R. E. Weiss and A. P. Waggoner, These Proceedings.Google Scholar
  21. 21.
    R. W. Bergstrom, Beitr. Phys. Atm., Vol. 46 (1973), p. 223.Google Scholar
  22. 22.
    D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Am., Vol. 70 (1980), P. 230.CrossRefGoogle Scholar
  23. 23.
    H. Rodhe, Atmos. Environ., Vol. 12 (1978), p. 671.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. A. Ogren
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations