Particulate Carbon at Various Locations in the United States

  • G. T. Wolff
  • P. J. Groblicki
  • S. H. Cadle
  • R. J. Countess


Particulate elemental and organic carbon concentrations were determined on filters collected between 1972 and 1980 at ten United States’ sites representing urban, suburban, rural, and remote areas. The results showed that particulate elemental carbon is ubiquitous with mean concentrations ranging from 1.1 micrograms per cubic meter at the remote site in South Dakota to 13.3 micrograms per cubic meter in a congested area in New York City. About 80% of the elemental carbon mass consists of particles with a diameter of less than 2.5 micrometers. Particulates in this size range are responsible for most pollutant-related visibility reductions. Since it appears that elemental carbon is the only light-absorbing particulate species, the specific light-absorption coefficient for elemental carbon was calculated to be 12.7 m2/g while the specific light-scattering coefficient was 3.2 m2/g. Using these coefficients, the contributions of elemental carbon to the observed visibility reduction at the various sites are estimated. These range from 6 to 38%. Also discussed are the seasonal and diurnal variations of particulate elemental and organic carbon as well as the contribution from secondary organic particulates. In addition, an updated carbon-source apportionment, based on recent analytical developments, is presented for the Denver area.


York City Diurnal Variation Carbon Concentration Elemental Carbon Remote Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Waggoner and R. J. Charlson, in “Denver Air Pollution Study, 1973, Vol..11,” p. 35, EPA–60019–77–001, (1977).Google Scholar
  2. 2.
    H. Rosen, A. D. A. Hansen, L. Gundel, and T. Novakov, Appl. Optics, Vol. 17 (1978), p. 3859.CrossRefGoogle Scholar
  3. 3.
    P. J. Groblieki, G. T. WolffandR. J. Countess,Atmos. Environ, Vol. 15 (1981), p. 2473.CrossRefGoogle Scholar
  4. 4.
    T. Novakov, S. G. Chang, and A. B. Harker, Science, Vol. 186 (1974), p. 259.CrossRefGoogle Scholar
  5. 5.
    S. G. Chang and T. Novakov, Atmos. Environ., Vol. 9 (1975), p. 495.CrossRefGoogle Scholar
  6. 6.
    R. J. Countess, G. T. Wolff, and S. H. Cadle, J. Air Pollut. Control Assoc. Vol. 30 (1980), p. 1194.Google Scholar
  7. 7.
    R. A. Reck, Science, Vol. 186 (1974), p. 1034.CrossRefGoogle Scholar
  8. 8.
    S. H. Cadle, P. J. Groblicki, and D. P. Stroup, Anal. Chem., Vol. 52 (1980), p. 2201.CrossRefGoogle Scholar
  9. 9.
    N. A. Kelly, G. T. Wolff, M. A. Ferman, Atmos. Environ. (In Press); Also available from General Motors Res. Labs as GMR-3598).Google Scholar
  10. 10.
    G. T. Wolff, P. J. Groblicki, R. J. Countess, and M. A. Ferman, “The Design of the Denver `Brown Cloud’ Study”, General Motors Research Laboratories, Warren, MI, Publication GMR-3050, (1979).Google Scholar
  11. 11.
    G. T. Wolff N. A. Kelly, and M. A. Ferman, Science, Vol. 211 (1981), p. 703.CrossRefGoogle Scholar
  12. 12.
    R. L. Johnson, J. J. Shah, and J. J. Huntzicker, presented at Conference on Sampling and Analysis of Toxic Organics in the Atmosphere, Boulder, CO, August (1979).Google Scholar
  13. 13.
    S. H. Cadle and P. J. Groblicki, (These proceedings) p.89.Google Scholar
  14. 14.
    T. T. Mercer, M. I. Tillery, and G. J. Newton, J. Aerosol Sci., Vol. 1 (1970), p. 9.CrossRefGoogle Scholar
  15. 15.
    T. Chan and M. Lippmann, Environ. Sci. Technol., Vol. 11 (1977) p. 377.CrossRefGoogle Scholar
  16. 16.
    R. J. Countess, S. H. Cadle, P. J. Groblicki, and G. T. Wolff, J. Air Pollut. Control Assoc., Vol. 31 (1981), p. 247.Google Scholar
  17. 17.
    C. I. Lin, M. Baker, and R. J. Charlson, Appl. Optics, Vol. 12 (1973), p. 1356.CrossRefGoogle Scholar
  18. 18.
    R. E. Weiss, A. P. Wagonner, D. L. Thorsell, J. S. Hall, L. A. Riley, and R. J. Charlson, in Proceedings, “Carbonaceous Particulate in the Atmosphere,” LBL-9037, Lawrence-Berkely Laboratories, Berkeley, CA, (1979), p. 257.Google Scholar
  19. 19.
    H. Rosen, A. D. A. Hansen, R. L. Dod, and T. Novakov, Science, Vol. 208 (1980), p. 741.CrossRefGoogle Scholar
  20. 20.
    G. T. Wolff R. J. Countess, P. J. Groblicki, M. A. Ferman, S. H. Cadle, and J. L. Muhlbaier, Atmos. Environ, Vol. 15 (1981), p. 2485.CrossRefGoogle Scholar
  21. 21.
    G. T. Wolff and P. J. Lioy, Environ. Sci. Technol. Vol. 14 (1980), p. 1257.CrossRefGoogle Scholar
  22. 22.
    G. T. Wolff, Ann. N. Y. Acad. Sci., Vol. 338 (1980), p. 379CrossRefGoogle Scholar
  23. 23.
    W. E. K. Middleton, Vision Through the Atmosphere, University of Toronto Press, Toronto, Ontario, Canada, (1963).Google Scholar
  24. 24.
    J. L. Muhlbaier and R. L. Williams, (These proceedings), p. 185.Google Scholar
  25. 25.
    J. L. Nolan, M. S. Thesis, Department of Civil Engineering, University of Washington, Seattle, WA, (1977).Google Scholar
  26. 26.
    D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Amer., Vol. 69 (1979), p. 1699.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • G. T. Wolff
    • 1
  • P. J. Groblicki
    • 1
  • S. H. Cadle
    • 1
  • R. J. Countess
    • 1
  1. 1.Environmental Science DepartmentGeneral Motors Research LaboratoriesWarrenUSA

Personalised recommendations