Contemporary Particulate Carbon

  • L. A. Currie


Advances in natural radiocarbon measurement techniques have made it feasible, for the first time, to assess the contribution of biogenic (contemporary) carbonaceous sources to individual chemical fractions in milligram quantities of atmospheric particles. Isotopic measurements for source reconciliation are doubly important when dealing with pure species, such as methane, carbon monoxide or elemental carbon, because they represent the only compositional information obtainable. Elemental carbon is of special interest in this regard because of changing energy patterns associated with both contemporary (wood-burning) and fossil (diesel fuel and unleaded gasoline) carbon. Following a review of the assumptions underlying the use of radiocarbon as a biogenic tracer and the status of minicounter and accelerator techniques for the assay of milligram and microgram samples, a survey is presented of recent observations on urban and rural carbonaceous particles. Results for these particles, which have been fractionated according to size or volatility, have exhibited the full range from fossil to biogenic source dominance.


Elemental Carbon Biogenic Carbon Carbonaceous Particle Chemical Element Balance Unleaded Gasoline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Covert, R. J. Charlson, R. Rasmussen and H. Harrison, Review of Geophysics and Space Physics, Vol. 13 (1975), p. 765.CrossRefGoogle Scholar
  2. 2.
    “Aerosols: anthropogenic and natural sources and transport.” Annals N.Y. Acad. Sci., Vol. 338 (1980).Google Scholar
  3. 3.
    B. Bolin, Ann. Rev. Energy, Vol. 2 (1977), p. 197.CrossRefGoogle Scholar
  4. 4.
    J. A. Cooper, J. G. Watson and J. J. Huntzicker, “Summary of the Portland aerosol characterization study,” Paper No. 79–24.4, 72nd Air Pollution Control Association Meeting, Cincinnati, Ohio, June, 1979.Google Scholar
  5. 5.
    W. J. Courtney, J. W. Tesch, G. M. Russwurm, R. K. Stevens, T. G. Dzubay and C. W. Lewis, “Characterization of the Denver aerosol between December, 1978 and December 1979, ” Paper No. 80.58–1, 73rd Air Pollution Control Association Meeting, Montreal, Canada, June, 1980.Google Scholar
  6. 6.
    K. A. Rahn, C. Brosset, B. Ottar and E. M. Patterson, These Proceedings.Google Scholar
  7. 7.
    National Research Council, Controlling Airborne Particles, National Academy of Sciences: Washington, D.C., 1980.Google Scholar
  8. 8.
    Geophysics Study Committee, Energy and Climate, NRC Geophysics Research Board, National Academy of Sciences, Washington, D.C., 1977.Google Scholar
  9. 9.
    T. Novakov, Ed., Proceedings Conference on Carbonaceous Particles in the Atmosphere, LBL-9037 (Lawrence Berkeley Laboratory) 1978.Google Scholar
  10. 10.
    H. Craig, Geochim. Cosmochim. Acta, Vol. 3 (1953), p. 53.CrossRefGoogle Scholar
  11. 11.
    J. A. Calder and P. L. Parker, Environ. Sci. Technol., Vol. 7 (1968), p. 535.CrossRefGoogle Scholar
  12. 12.
    J. H. Troughton, “Carbon Isotope Fractionation by Plants,” Proceedings of the Eighth International Radiocarbon Dating Conference, Lower Hutt, New Zealand, Vol. 2 (1972), p. 421.Google Scholar
  13. 13.
    L. A. Currie and R. B. Murphy, “Origin and residence times of atmospheric pollutants: Application of 14C,” in Methods and Standards for Environmental Measurement, W. H. Kirchoff, Ed., NBS Spec. Pub. 464, National Bureau of Standards, Washington, D.C., Nov., (1977), p. 439.Google Scholar
  14. 14.
    L. A. Currie, S. M. Kunen, K. J. Voorhees, R. B. Murphy and W. F. Koch, “Analysis of Carbonaceous Particulates and Characterization of Their Sources by Low-Level Radiocarbon Counting and Pyrolysis/Gas Chromatography/Mass Spectrometry,” Conference on Carbonaceous Particles in the Atmosphere, University of California, Berkeley, 1978.Google Scholar
  15. 15.
    R. A. Muller, Science, Vol. 196 (1977), p. 489.CrossRefGoogle Scholar
  16. 16.
    H. Gove, Ed., Proceedings of the First Conference on Radiocarbon Dating with Accelerators, University of Rochester, 1978.Google Scholar
  17. 17.
    L. A. Currie, G. A. Klouda, D. Elmore, R. Ferraro and H. Gove, “Accelerator Mass Spectrometry and Electromagnetic Isotope Separation for the Determination of Natural Radiocarbon at the Microgram Level,” (in preparation).Google Scholar
  18. 18.
    M. Rubin, “Sample Preparation for Van de Graaff Accelerator Dating,” in L. A. Currie, Ed., Nuclear and Chemical Dating Techniques, American Chemical Society Symposium Series, 1981.Google Scholar
  19. 19.
    R. K. Stevens, W. A. McClenny, T. G. Dzubay, M. A. Mason and W. J. Courtney, These Proceedings.Google Scholar
  20. 20.
    W. F. Libby, Radiocarbon Dating, University of Chicago Press: Chicago, 1952.Google Scholar
  21. 21.
    L. A. Currie, J. Noakes and D. Breiter, “Measurement of Small Radiocarbon Samples: Power ofAlternative Methods for Tracing Atmospheric Hydrocarbons,” Ninth International Radiocarbon Conference, University of California, Los Angeles and San Diego, 1976.Google Scholar
  22. 22.
    J. Swanson, A. Fairhall and L. A. Currie, “Carbon Isotope Analysis of Sedimentary Polycyclic Aromatic Hydrocarbons,” (in preparation).Google Scholar
  23. 23.
    U. Olsson, Ed., Radiocarbon Variations and Absolute Chronology, Proceedings of the 12th Nobel Symposium held at the Institute of Physics at Uppsala University, Wiley-Interscience, New York, 1970; and P. E. Damon, J. C. Lerman and A. Long, “Temporal Fluctuations of Atmospheric C-14: Causal Factors and Implications,” Annual Review of Earth and Planetary Science, Vol. 6 (1978), p.457.Google Scholar
  24. 24.
    J. A. Cooper, L. A. Currie and G. A. Klouda, “Assessment of Contemporary Carbon Combustion Source Contributions to Urban Air Particulate Levels Using C-14 Measurements,” (to be published in Env. Sci. & Tech.).Google Scholar
  25. 25.
    H. Schultz, L. A. Currie, F. R. Matson and W. W. Miller, Radiocarbon, Vol. 5 (1963), P. 342.Google Scholar
  26. 26.
    J. G. Watson, (Ed.), Proceedings Receptor Modeling Workshop, Quail Roost, N.C., Feb., 1980.Google Scholar
  27. 27.
    G. E. Gordon, Env. Sci. & Tech., Vol. 14 (1980), p. 792.CrossRefGoogle Scholar
  28. 28.
    G. T. Wolff, R. J. Countess, P. J. Groblicki, M. A. Ferman, S. H. Cadle and J. L. Muhlbaier, Minos. Environ, Vol. 15 (1981), p. 2485.Google Scholar
  29. 29.
    S. L. Heisler, R. C. Henry, J. G. Watson and G. M. Hidy, “The 1978 Denver Winter Haze Study,” Motor Vehicle Manufacturers Association, Detroit, Michigan, 1980.Google Scholar
  30. 30.
    I. R. Kaplan, L. A. Currie and G. A. Klouda, “Isotopic and Chemical Tracers for Organic Pollutants in the Southern California Air Basin,” (to be published).Google Scholar
  31. 31.
    K. J. Voorhees, S. M. Kunen, S. L. Durfee, L. A. Currie and G. A. Klouda, “The Determination of Source Contribution of Organic Matter in Atmospheric Particulates by Pyrolysis/Mass Spectrometry and 14CAnalysis,” (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • L. A. Currie
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations