Chemical and Catalytic Properties of Elemental Carbon

  • S. G. Chang
  • R. Brodzinsky
  • L. A. Gundel
  • T. Novakov


Elemental carbon particles contain many defects—dislocations in their graphitic structure — which constitute the active sites. Carbon atoms located at these sites show strong tendencies to react with other molecules because of residual valencies. The interaction of oxygen and water occurs in air, resulting in the incorporation of oxygen and hydrogen with carbon particles. Nearly every type of oxygen-containing functional group known in organic chemistry has been postulated in the carbon particle. The nature of these oxygen functional groups can affect the chemical reactivity of carbon particles. Very little is known about the surface nitrogen functional groups on carbon particles, however. We will discuss the interaction of elemental carbon with NH3, leading to the formation of nitrogenous functional groups. The possible environmental influence of these nitrogenous functional groups will be presented.

Carbon particles can also play an important role as catalyst for many chemical reactions in the atmosphere. The assessment of the impact of these carbon-catalyzed reactions on air quality is difficult because the kinetics and mechanisms of these reactions have not been well studied. We have recently completed a kinetic study on the catalytic oxidation of SO2 on carbon particles in an aqueous suspension. A rate law and a mechanism for this reaction will be presented. We will assess the relative importance of this carbon-catalyzed oxidation of SO2 in the atmosphere with respect to competing reactions in liquid water.


Carbon Particle Elemental Carbon Soot Particle Graphite Particle Aqueous Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Chang and T. Novakov, Atmos. Environ., Vol. 9 (1975), p. 495.CrossRefGoogle Scholar
  2. 2.
    H. Rosen, A. D. A. Hansen, L. Gundel, and T. Novakov, Appl. Opt., Vol. 17 (1978), p. 3859.CrossRefGoogle Scholar
  3. 3.
    U. Hofmann and D. Wilm, Z. Elektrochem. angew. physik. Chem., Vol. 42 (1936), p. 504.Google Scholar
  4. 4.
    V. A. Garten and D. E. Weiss, Rev. Pure Appl. Chem., Vol. 7 (1957), p. 69.Google Scholar
  5. 5.
    H. P. Boehm, Advan. Catalysis, Vol. 16 (1966), p. 179.CrossRefGoogle Scholar
  6. 6.
    R. W. Coughlin and F. S. Ezra, Environ. Sci. Technol., Vol. 2 (1968), p. 291.CrossRefGoogle Scholar
  7. 7.
    B. R. Puri, in Chemistry and Physics of Carbon, New York, Dekker, Vol. VI (1970), p. 191.Google Scholar
  8. 8.
    B. R. Puri, Carbon, Vol. 4 (1966), p. 391.CrossRefGoogle Scholar
  9. 9.
    R. N. Smith, Quarterly Rev., Vol. 13 (1959), p. 287.CrossRefGoogle Scholar
  10. 10.
    Y. A. Zary’yanz, V. F. Kiselev, N. N. Lezhnev, and D. V. Nikitina, Carbon, Vol. 5 (1967), p. 127.CrossRefGoogle Scholar
  11. 11.
    V. A. Garten, D. E. Weiss, and J. B. Willis, Aust. J. Chemi., Vol. 10 (1957), p. 295.CrossRefGoogle Scholar
  12. 12.
    H.P. Boehm E. Diehl W. Heck and R. Sappok Angew. Chem. Int. Ed. Engl. Vol. 3 (1964) p. 669.Google Scholar
  13. 13.
    B. R. Puri, in, Proceedings, Conference on Carbon, 5th, Oxford, Pergamon, Vol. 1 (1962), p. 165.Google Scholar
  14. 14.
    P. J. Hart, F. J. Vastola, and P. L. Walker, Jr., Carbon, Vol. 5 (1967), p. 363.CrossRefGoogle Scholar
  15. 15.
    N. R. Laine, F. J. Vastola, and P. L. Walker, Jr., J. Phys. Chem., Vol. 67 (1963), p. 2030.CrossRefGoogle Scholar
  16. 16.
    H. B. Palmer and C. F. Cullis in Chemistry and Physics of Carbon New York Dekker Vol. 1(19) p.265.Google Scholar
  17. 17.
    S. W. Weller and T. F. Young, J. Am. Chem. Soc., Vol. 70, (1948), p. 4155.CrossRefGoogle Scholar
  18. 18.
    P. H. Emmett, Chem. Rev., Vol. 43 (1948), p. 69.CrossRefGoogle Scholar
  19. 19.
    E. C. Larsen and J. H. Walton, J. Phys. Chem., Vol. 44 (1940), p. 70.CrossRefGoogle Scholar
  20. 20.
    T. Novakov, P. Mueller, A. E. Alcocer, and J. W. Otvos, J. Colloid Interface Sci. Vol. 39, (1972), p. 225.CrossRefGoogle Scholar
  21. 21.
    L. A. Gundel, S. G. Chang, M. S. Clemenson, S. S. Markowitz, and T. Novakov, In: Nitrogenous Air Pollutants, Ann Arbor, Ann Arbor Science, (1979), p. 211.Google Scholar
  22. 22.
    C. Brosset paper presented at the Chemical Institute of Canada Annual Meeting Ottawa Ontario June 8–11 1980 sessions on acid precipitation.Google Scholar
  23. 23.
    T. Novakov and S. G. Chang, Lawrence Berkeley Laboratory Report LBL-6323, (1977).Google Scholar
  24. 24.
    F. Tuinstra and J. L. Koenig, J. Chemi. Phys., Vol. 53 (1970), p. 1126.CrossRefGoogle Scholar
  25. 25.
    R. A. Friedel and L. J. E. Hofer, J. Phys. Chem., Vol. 74 (1970), p. 2921.CrossRefGoogle Scholar
  26. 26.
    S. G. Chang and T. Novakov, Lawrence Berkeley Laboratory Report LBL-4446, (1975).Google Scholar
  27. 27.
    N. Shilov and K. Chmutov, Z. Phys. Chem., (Leipzig), Vol. A149 (1930), p. 211.Google Scholar
  28. 28.
    V. A. Garten and D. E. Weiss, Aust. J. Appl. Sci. Vol. 7, (1956), p. 148.Google Scholar
  29. 29.
    D. Rivin, in Proceedings of the 5th Conference on Carbon, Vol. II New York, Perga-mon, (1963), p. 199.Google Scholar
  30. 30.
    A. Frumkin, R. Burstein, and P. Lewin, Z. Phys. Chem., Vol. A157 (1931), p. 442.Google Scholar
  31. 31.
    B. Steenberg, Adsorption and Exchange of Ions on Activiated Charcoal, ( Uppsala, Almquist and Wiksells, 1944 ).Google Scholar
  32. 32.
    J. S. Mattson and H. B. Mark, Jr., Activated Carbon, Ch. 6 New York, Marcel Dekker, (1971).Google Scholar
  33. 33.
    R. W. Coughlin, I88888EC Product Res. Develop. Vol. 8 (1969), p. 12.Google Scholar
  34. 34.
    T. Novakov, S. G. Chang, and A. B. Harker, Science, Vol. 186 (1974), p. 259.CrossRefGoogle Scholar
  35. 35.
    S. G. Chang, R. Brodzinsky, R. Toossi,S. S. Markowitz, and T. Novakov, in Proceedings, Conference on Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory Report LBL-9037, (1979), p. 122.Google Scholar
  36. 36.
    R. Brodzinsky, S. G. Chang, S. S. Markowitz, and T. Novakov, J. Phys. Chem. Vol. 84 (1980), p. 3354.CrossRefGoogle Scholar
  37. 37.
    S. G. Chang, R. Toossi, and T. Novakov, Lawrence Berkeley Laboratory Report LBL11380; accepted for publication in Atmos. Environ., (1980).Google Scholar
  38. 38.
    W. R. Cofer III, D. R. Schryer, and R. S. Rogowski, Atmos. Environ., Vol. 14 (1980), p. 571.CrossRefGoogle Scholar
  39. 39.
    L. G. Britton and A. G. Clarke, Atmos. Environ. Vol. 14 (1980), p. 829.CrossRefGoogle Scholar
  40. 40.
    W. R. Cofer III, D. R. Schryer, and R. S. Rogowski, submitted for publication in Atmos. Environ., (1980).Google Scholar
  41. 41.
    M. N. Rao and O. H. Hougen, Chem. Eng. Progr. Symp. Series, Vol. 48, (1952), p. 110.Google Scholar
  42. 42.
    P. F. Bente and J. H. Walton, J. Phys. Chem. Vol. 47 (1943), p. 133.CrossRefGoogle Scholar
  43. 43.
    R. Dulou, Chim. Ind. (Paris), Vol. 54 (1945), p. 396.Google Scholar
  44. 44.
    E. Z. Stumpp, Anorg. allgem. Chem., VI. 337 (1965), p. 292.CrossRefGoogle Scholar
  45. 45.
    L. Gundel, private communication, (1979).Google Scholar
  46. 46.
    W. H. Benner, private communication, (1980).Google Scholar
  47. 47.
    A. Clark, The Theory of Adsorption and Catalysis, New York, Academic, (1970).Google Scholar
  48. 48.
    J. Siedlewski, Int. Chem. Eng., Vol. 5 (1965), p. 297.Google Scholar
  49. 49.
    S. B. Oblath, S. S. Markowitz, T. Novakov, and S. G. Chang, Lawrence Berkeley Laboratory Report LBL-10504; accepted for publication in J. Phys. Chem. (1980).Google Scholar
  50. 50.
    S. Beilke, D. Lamb, and J. Müller, Atmos. Environ., Vol. 9 (1975), p. 1083.CrossRefGoogle Scholar
  51. 51.
    R. E. Erickson, L. M. Yates, R. L. Clark, and D. McEwen, Atmos. Environ., Vol. 11 (1977), p. 813.CrossRefGoogle Scholar
  52. 52.
    J. Freiberg, Atmos. Environ., Vol. 9 (1975), p. 661.CrossRefGoogle Scholar
  53. 53.
    M. J. Matteson, W. Stober, and H. Luther, Ind. 88888 Eng. Chem. Fundam., Vol. 8 (1969), p. 677.CrossRefGoogle Scholar
  54. 54.
    G. E. Gordon, D. D. Davis, G. W. Israel, H. E. Landserberg, and T. C. O’Haver, Report NSF/RA/E-73/189 (1975); available from NTIS as PB 262 574 ).Google Scholar
  55. 55.
    N. C. Lau and R. J. Charlson, Atmos. Environ., Vol. 11 (1977), p. 475.CrossRefGoogle Scholar
  56. 56.
    S. Beilke and G. Gravenhorst, Atmos. Environ., Vol. 14 (1978), p. 463.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • S. G. Chang
    • 1
  • R. Brodzinsky
    • 1
  • L. A. Gundel
    • 1
  • T. Novakov
    • 1
  1. 1.Lawrence Berkeley LaboratoriesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations