Skip to main content

The Atmospheric Cycle of Elemental Carbon

  • Chapter
Particulate Carbon

Abstract

Four sets of factors determine the overall nature of the cycling of elemental carbon through the atmosphere and thereby determine the concentration fields, and fluxes in and out of the atmosphere. The source factor controls mass emission rates, initial microphysical properties such as size distribution, initial chemical composition, and location of injection into the atmosphere. Aerosol mechanics determine the rate of coagulation of the elemental carbon particles with themselves and with other aerosol particles, the rate of diffusive removal to surface sinks, and sedimentation.Chemical factors, largely the physical and chemical properties of impure graphitic carbon, subsequently govern the refractive indices along with the chemical interaction of the particles with other gas and aerosol constituents and with liquid water. Finally, meteorological factors include mixing in the planetary boundary layer, advection, incorporation into clouds and/or into cloud droplets, chemical processes inside of cloud drops, cloud evaporation and removal by precipitation. These factors may be linked together in a system flow diagram to explain the observed presence and behavior of carbon particles in air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. G. Hill, Trans. Farad. Soc., Vol. 32 (1936), p. 1126.

    Article  Google Scholar 

  2. R. E. Waller, J. Air. Poll. Control Assoc., Vol. 14 (1964), p. 323.

    CAS  Google Scholar 

  3. H. Rodhe, Atmos. Environ. Vol. 12 (1978), p. 671.

    Article  CAS  Google Scholar 

  4. T. Y. Yuen, H. Harrison, R. J. Charlson and M. B. Baker, Atmos. Environ., Vol. 13 (1979), p. 1351.

    Article  CAS  Google Scholar 

  5. J. Lahaye, G. Prado and J. B. Donnet, Carbon, Vol. 12 (1974), p. 27.

    Article  CAS  Google Scholar 

  6. J. Donnet and A. Voet, Carbon Black: Physics, Chemistry, and Elastomer Reinforcement, Marcel Dekker, Inc., New York, 1976.

    Google Scholar 

  7. H. B. Palmer and C. F. Cullis, “The Formationof Carbon From Gases” in Chemistry and Physics of Carbon, P. L. Walker, Jr., editor, Marcel Dekker, Inc., New York, (1964), pp. 265–325.

    Google Scholar 

  8. S. A. Pursley, “Kinetics of Carbon Dioxide and Carbon Formation from Carbon Monoxide,” Ph.D. Dissertation, Purdue University, 1965.

    Google Scholar 

  9. K. Whitby, “Size distribution and physical properties of combustion aerosols” in Proceedings of the Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.

    Google Scholar 

  10. D. F. Dolan and D. B. Kittelson, SAE Paper 780110, SAE Transactions, (1979), p. 462.

    Google Scholar 

  11. R. Husar, “Coagulation of Knudsen Aerosols,” Ph.D. Dissertation, University of Minnesota, 1971.

    Google Scholar 

  12. P. A Russel, “Carbonaceous particulates in the atmosphere: Illumination by electron microscopy” Proc. Conf. On Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.

    Google Scholar 

  13. A. P. Waggoner, M. B. Baker and R. J. Charlson, App. Opt., Vol. 12 (1973), p. 895.

    Article  Google Scholar 

  14. A. D. A. Hansen, W. H. Benner and T. Novakov, “A carbon and lead emission inventory for the Greater San Francisco Bay Area,” in Atmospheric Aerosol Research Annual Report, 1977–1978, Lawrence Berkeley Laboratory, Berkeley, California, 1978.

    Google Scholar 

  15. W. R. Pierson, “Particulate organic matter and total carbon from vehicles on the road,” Proc. Conf. On Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.

    Google Scholar 

  16. K. J. Springer, “Exhaust particulate - the diesel’s achilles’ heel,” Paper No. 78–14.3, 71st Annual Meeting of the Air Pollution Control Assoc., Houston, Texas, 1978.

    Google Scholar 

  17. J. D. Stockham, D. L. Fenton, R. H. Johnson and P. P. Campbell, “Turbine Engine Particulate Emission Characterization,” U.S. Dept. of Transportation Report No. FAA-RD-79–15, 1979.

    Google Scholar 

  18. S. Hersh, J. F. Hurley and R. C. Carr, “The Effects of Smoke Suppressant Additives on the Particulate Emissions from a Utility Gas Turbine,” Paper 76–8.1, 69th Annual Meeting of the Air Pollution Control Assoc., Portland, OR., 1976.

    Google Scholar 

  19. C. E. Junge and N. Abel, Modification of aerosol size distribution in the atmosphere and development ofan ion counter of high sensitivity. Final Techn. Rep. No. DA 91–591EUC-3483, DDCNo. AD469376. Johannes Gutenberg University, Mainz, Germany, 1965.

    Google Scholar 

  20. J. A. Ogren, These Proceedings, 1981.

    Google Scholar 

  21. F. A. Cotten and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, John Wiley Sons, (1962), p. 217.

    Google Scholar 

  22. L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, New York, (1960), p. 235.

    Google Scholar 

  23. W. H. Lipkea, J. H. Johnson and C. T. Vuk, SAE Transactions, Vol. 87 (1979), p. 405.

    Google Scholar 

  24. R. E. Weiss, A.P.Waggonner, R. J. Charlson and N. C. A.lquist, Science, Vol. 195 (1977), p. 979.

    CAS  Google Scholar 

  25. B. J. Mason, The Physics of Clouds, Oxford Press, 1957.

    Google Scholar 

  26. W. P. Giddings and M. B. Baker, J. Atmos. Sci., Vol. 34 (1977), p. 1957.

    Article  CAS  Google Scholar 

  27. D. A. Hegg and P. V. Hobbs, Atmos. Environ., Vol. 12 (1978), p. 241.

    Article  CAS  Google Scholar 

  28. S. G. Chang, R. Brodzinsky, R. Toossi, R. R. Markowitz and T. Novakov, “Catalytic oxidationof SO2 on carbon in aqueous solution,” Proc. Conf. On Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laboratory, Berkeley, California, 1979.

    Google Scholar 

  29. H. Rosen and T. Novakov, Nature, Vol. 266 (1977), p. 708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Charlson, R.J., Ogren, J.A. (1982). The Atmospheric Cycle of Elemental Carbon. In: Wolff, G.T., Klimisch, R.L. (eds) Particulate Carbon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4154-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4154-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4156-7

  • Online ISBN: 978-1-4684-4154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics