Advertisement

Allometry, Brain Size, Cortical Surface, and Convolutedness

  • Harry J. Jerison

Abstract

The size of the mammalian brain may be directly and closely related to the amount of information that the brain can handle. My purpose is to show how and why I think this is the case and to apply the results to comparisons among primates. Two measures of size are emphasized here: the gross weight of the undissected brain and the total surface area of the cerebral cortex. A third measure, the convolutedness, or extent of fissurization, is closely related to the first two measures.

Keywords

Mammalian Brain Brain Size Cortical Surface Brain Weight Large Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillarger, J., 1853, De l’étendue de la surface du cerveau et de ses rapports avec le développement de l’intelligence. Ann. Med.-Psych. (ser. 2, 5:1–9.Google Scholar
  2. Brodmann, K., 1913. Neue Forschungsergebnisse der Grosshirnrindenanatomie mit besonderer Berücksichtigung anthropologischer Fragen. Ver. 85 Vers. Deutsch. Naturf. und Aertze in Wien.Google Scholar
  3. Eccles, J.C., 1979. The Human Mystery. Gifford Lectures 1977–1978. Springer-Verlag, New York.Google Scholar
  4. Elias, H., and Schwartz, D., 1971, Cerebro-cortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man. Z. f. Säugetierkunde., 36:147–163.Google Scholar
  5. Jerison, H.J., 1973. Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  6. Jerison, H.J. 1977, The theory of encephalization. Ann. N.Y. Acad. Sci., 299:146–160.CrossRefGoogle Scholar
  7. Jerison, H.J., 1979. The evolution of diversity in brain size. In, Development and Evolution of Brain Size: Behavioral Implications, M. Hahn, C. Jensen, and B. Dudek, eds., Academic Press, New York, pp. 29–57.Google Scholar
  8. Mountcastle, V.B., 1978. An organizing principle for cerebral function: the unit module and the distributed system. In, The Mindful Brain, G.M Edelman, and V.B. Mountcastle, eds., MIT Press, Cambridge, Mass.Google Scholar
  9. Rockel, A.J., Hiorns, R.W., and Powell, T.P.S., 1980, The basic uniformity in structure of the neocortex. Brain, 103:221–244.CrossRefGoogle Scholar
  10. Scheibel, M.E., and Scheibel, A.B., 1970. Elementary processes in selected thalamic and cortical subsystems: the structural substrates. In, The Neurosciences Second Study Program, Rockefeller University Press, New York, pp. 443–457.Google Scholar
  11. Szentagothai, J., 1978, The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture, 1977, Proceedings of the Royal Society, London. Series B 201:219–248.Google Scholar
  12. Thompson, D’A.W., 1942. On Growth and Form, Cambridge University Press, Cambridge, England.Google Scholar
  13. Towe, A.L., 1975, Notes on the hypothesis of columnar organization in somatosensory cerebral cortex. Brain Behav. Evol., 11:16–47.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Harry J. Jerison
    • 1
  1. 1.Department of Psychiatry and Biobehavioral SciencesUCLA Medical SchoolLos AngelesUSA

Personalised recommendations