The Relativity of Relative Brain Measures and Hominid Mosaic Evolution

  • Ralph L. Holloway
  • David G. Post


Several developments in recent years have renewed interest in finding measures or parameters to characterize brain and body size relationships both quantitatively and objectively. Among three developments the most outstanding are 1) a deepening appreciation and understanding of all metric relationships in evolutionary change and of formal comparisons among extant species (Bauchot and Stephan, 1969; Gould, 1973; Holloway, 1976; 1979; Jerison, 1973; Passingham, 1973; Passingham and Ettlinger, 1975; Sacher, 1975; Stephan et al., 1970; Hemmer, 1971; Leutenegger, 1973); 2) the publication of Jerison’s (1973) volume on brain size and intelligence in evolutionary perspective; 3) the attempts to quantify body size parameters of certain early hominid specimens by physical anthropologists, McHenry (1974,1975) and Holloway (1975); and 4) the recent designation (Johansen and White, 1979) of the Hadar and Laetoli (Ethiopia and Tanzania, respectively) hominids to a new taxon, Australopithecus afarensis, a taxon clearly having a small ape-sized brain, yet with other morphological attributes indicative of true hominid status (e.g., bipedality, dentition).


Brain Size World Monkey Reference Equation Hominid Evolution Fossil Hominid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauchot, R. and Stephan, H., 1969, Encéphalisation et niveau évolutif chez les simiens. Mammalia, 33:235–275.CrossRefGoogle Scholar
  2. Dubois, E., 1897, Sur le rapport du poids de l’encéphale avec la grandeur du corps chez le mammiferes. Bull. Soc. Anthrop., Paris, 8:337–376.CrossRefGoogle Scholar
  3. Gould, S.J., 1966, Allometry and size in ontogeny and phylogeny. Biol. Rev., 41:587–640.CrossRefGoogle Scholar
  4. Gould, S.J., 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain. In, Contributions to Primates, F. Szalay, ed., Vol. 5, Karger, Basel, pp. 244–292.Google Scholar
  5. Gurche, J., 1978. Early primate brain evolution. Master’s thesis, University of Kansas.Google Scholar
  6. Hemmer, H., 1971. Beitrag zur Erfassung der progressiven Cephalisation bei Primaten. In, Proc. 3rd Congress Primatology, Zurich 1970, H. Biegert and W. Leutenegger, eds., vol. 1, Karger, Basel, pp. 99–107.Google Scholar
  7. Holloway, R.L., 1975. 43rd James Arthur Lecture on the Evolution of the Human Brain: The Role of Human Social Behavior in the Evolution of the Brain. Am. Mus. Nat. Hist., N.Y.Google Scholar
  8. Holloway, R.L., 1976. Some problems of hominid brain endocast reconstruction, allometry, and neural reorganization. In, Colloquium VI of the IX Congress of the U.I.S.P.P., Nice, 1976 Congress, Pretirage, pp. 69–119.Google Scholar
  9. Holloway, R.L., 1979. Brain size, allometry and reorganization: toward a synthesis. In, Development and Evolution of Brain Size, M.E. Hahn, B.C. Dudek, and C. Jensen, eds., Academic Press, New York, pp. 59–88.Google Scholar
  10. Holloway, R.L., 1981. Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. Phil. Trans. Soc. Lond., B292:155–166.CrossRefGoogle Scholar
  11. Jerison, H., 1973. Evolution of the Brain and Intelligence. Academic Press, New York.Google Scholar
  12. Johansen, D.C., and White, T.D., 1979, A systematic assessment of early African hominids. Science, 203:321–329.CrossRefGoogle Scholar
  13. Leutenegger, W., 1973, Encephalization in Australopithecines: A new estimate. Folia Primatologia, 19:9–17.CrossRefGoogle Scholar
  14. McHenry, H.M., 1974, Fossil hominid body weight and brain size. Nature, 74:686–688.Google Scholar
  15. McHenry, H.M., 1975, Fossils and the mosaic theory of human evolution. Science, 190:425–431.CrossRefGoogle Scholar
  16. Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, K., and Bent, D.H., 1975. S.P.S.S. (Statistical Package for the Social Sciences), 2nd ed., McGraw-Hill, New York.Google Scholar
  17. Passingham, R.E., 1973, Anatomical differences between the cortes of man and other primates. Brain, Behavior and Evolution, 7:337–359.CrossRefGoogle Scholar
  18. Passingham, R.E., and Ettlinger, G., 1975, A comparison of cortical functions in man and other primates. International Review Neurobiology, 16:233–299.CrossRefGoogle Scholar
  19. Sacher, G.A., 1975. Maturation and longevity in relation to cranial capacity in hominid evolution, In, Primate Functional Morphology and Evolution, R. Tuttle, ed., Mouton Press, The Hague.Google Scholar
  20. Simons, E.L., 1972. Primate Evolution, MacMillan Company, New York.Google Scholar
  21. Smith, R.J., 1980, Rethinking allometry. J. Theor. Biol., 87:97–111.CrossRefGoogle Scholar
  22. Snell, O., 1892, Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychol., 23:436–445.CrossRefGoogle Scholar
  23. Stephan, H., Bauchot, R., and Andy, O.J., 1970. Data on brain size of the brain and various brain parts in insectivores and primates, In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 289–297.Google Scholar
  24. Tobias, P.V., 1971. The Brain in Hominid Evolution, Columbia University Press, New York.CrossRefGoogle Scholar
  25. White, T.D., 1980, Evolutionary implications of Pliocene hominid footprints. Science, 208:175–176.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ralph L. Holloway
    • 1
  • David G. Post
  1. 1.Department of AnthropologyColumbia UniversityNew YorkUSA

Personalised recommendations