Allometric Approaches to the Evolution of the Primate Nervous System

  • R. D. Martin


Both reconstruction of phylogenetic relationships between organisms and the related exercise of classification depend on assessment of similarities and differences. These undertakings are complicated by the fact that the organisms compared may differ (perhaps considerably) in body size. Maintenance of any functional constancy in species spanning a range of body sizes often obliges other features to change in a systematic nonlinear fashion with body size (allometry) (e.g., Gould, 1966, 1975a,b; Huxley, 1932; Jerison, 1973, 1977; Martin, 1975, 1979, 1980; McMahon, 1973; Radinsky, 1967; Schmidt-Nielsen, 1970, 1972; Stahl, 1962, 1963, 1967; Stephan, 1972). Most dimensional characters do not vary in direct proportion to body size (isometry), and brain size in vertebrates generally does not increase in simple proportion with increasing body size. Instead, the ratio of brain size to body size decreases systematically with increasing body size within any given taxonomic group (negative allometry). Such “scaling” of brain size to fit any given body size appears to follow a biological law to maintain some functional constancy and is, therefore, broadly predictable. Thus, whenever we conduct comparisons between organisms of different body sizes, we must take into account any recognizable biological laws governing the scaling of characters to body size.


Body Size Major Axis Basal Metabolic Rate Brain Size Functional Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauchot, R., and Stephan, H., 1966, Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia, 30:160–196.CrossRefGoogle Scholar
  2. Bauchot, R., and Stephan, H., 1969, Encéphalisation et niveau évolutif chez les simiens. Mammalia, 33:225–275.CrossRefGoogle Scholar
  3. Brody, S., 1945. Bioenergetics and Growth, Rheinhold Pub. Co., New York.Google Scholar
  4. Count, E.W., 1947, Brain and body weight in man: their antecendents in growth, and evolution. Ann. N. Y. Acad. Sci., 46:993–1122.CrossRefGoogle Scholar
  5. Creighton, G.K., 1980, Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J. Zool. (Lond.)., 191:435–443.CrossRefGoogle Scholar
  6. Crile, G.W., and Quiring, D.P., 1940, A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci., 40:219–259.Google Scholar
  7. Findley, J.S., 1969, Brain size in bats. J. Mammal., 50:340–344.CrossRefGoogle Scholar
  8. Gingerich, P.D., 1977, Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. Am. J. Phys. Anthrop., 47:395–398.CrossRefGoogle Scholar
  9. Gingerich, P.D., and Schoeninger, M.J., 1979, Patterns of tooth size variability in the dentition of primates. Am. J. Phys. Anthrop., 51:457–465.CrossRefGoogle Scholar
  10. Gingerich, P.D., Smith, B.H. and Rosenberg, K., 1980, Patterns of allometric scaling in the primate dentition and prediction of body size from tooth size. Am. J. Phys. Anthrop., 52:231–232.Google Scholar
  11. Gould, S.J., 1966, Allometry and size in ontogeny and phylogeny. Biol. Rev., 41:587–640.CrossRefGoogle Scholar
  12. Gould, S.J., 1975a, Allometry in primates with emphasis on scaling and the evolution of the brain. Contrib. Primatol., 5:244–292.Google Scholar
  13. Gould, S. J., 1975b, On the scaling of tooth size in mammals. Am. Zool., 15:351–362.Google Scholar
  14. Heinroth, O., 1930. Angaben zur Fortpflanzungsbiologie der Vogel und Säugetiere. In, Tabulae Biologicae, vol. 6, C. Oppenheimer, and L. Pincussen, eds., W. Junk, Berlin, 716–741.Google Scholar
  15. Hemmingsen, A.M., 1950, The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep. Steno. Mem. Hosp., 4:7–58.Google Scholar
  16. Hemmingsen, A.M., 1960, Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno. Mem. Hosp., 9:1–110.Google Scholar
  17. Huxley, J.S., 1932. Problems of Relative Growth. Methuen, London.Google Scholar
  18. Jerison, H.J., 1973. Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  19. Jerison, H. J., 1977, The theory of encephalization. Ann. N. Y. Acad. Sci., 299:146–160.CrossRefGoogle Scholar
  20. Jolicoeur, P., 1973, Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment. J. Am. Stat. Assoc, 68:866–871.CrossRefGoogle Scholar
  21. Kay, R.F., 1975, The functional adaptations of primate molar teeth. Am. J. Phys. Anthrop., 43:195–215.CrossRefGoogle Scholar
  22. Kay, R.F., and Simons, E.L., 1980, The ecology of Oligocene African Anthropoidea. Int. J. Primatol., 1:21–37.CrossRefGoogle Scholar
  23. Kermack, K.A., and Haidane, J.B.S., 1950, Organic correlation and allometry. Biometrika, 37:30–41.Google Scholar
  24. Kleiber, M., 1932, Body size and metabolism. Hilgardia, 6:315–353.Google Scholar
  25. Kleiber, M., 1947, Body size and metabolic rate. Physiol. Rev., 27:511–541.Google Scholar
  26. Kleiber, M., 1961. The Fire of Life: An Introduction to Animal Energetics, John Wiley, New York.Google Scholar
  27. Kleiber, M., 1969. Further consideration of the relation between metabolic rate and body size. In, Energy Metabolism of Farm Animals, K.L. Blaxter, J. Kielanowski, and G. Thorbek, eds., Oriel Press, Newcastle-upon-Tyne, 505–511.Google Scholar
  28. Leutenegger, W., 1973, Maternal-fetal weight relationship in primates. Folia Primatol., 20:280–293.CrossRefGoogle Scholar
  29. McMahon, T., 1973, Size and shape in biology. Science, 179:1201–1204.CrossRefGoogle Scholar
  30. Martin, R.D., 1973, Comparative anatomy and primate systematics. Symp. Zool. Soc. Lond., 33:301–337.Google Scholar
  31. Martin, R.D., 1975. The bearing of reproductive behavior and ontogeny on strepsirhine phylogeny. In, Phylogeny of the Primates, W.P. Luckett, and F.S. Szalay, eds., Plenum Pub. Co., New York, pp. 265–297.Google Scholar
  32. Martin, R.D., 1979. Phylogenetic aspects of prosimian behavior. In, The Study of Prosimian Behavior, G.A. Doyle, and R.D. Martin, eds., Academic Press, New York, pp. 45–77.Google Scholar
  33. Martin, R.D. 1980, Adaptation and body size in primates. Z. Morph. Anthrop., 71:115–124.Google Scholar
  34. Martin, R.D., 1981a, Field studies of primate behaviour. Symp. Zool. Soc. Lond., 46:287–336.Google Scholar
  35. Martin, R.D., 1981b, Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293:57–60.CrossRefGoogle Scholar
  36. Pirie, P.L., 1978, Allometric scaling in the post-canine dentition with reference to primate diets. Primates, 19:583–591.CrossRefGoogle Scholar
  37. Platel, R., 1979. Brain weight-body weight relationship. In, Biology of the Reptilia, vol. 9, C. Gans, ed., Academic Press, London, pp. 147–171.Google Scholar
  38. Portmann, A., 1946, Etudes sur la cérébralisation chez les oiseaux. Alauda, 14:2–20.Google Scholar
  39. Portmann, A., 1947, Etudes sur la cérébralisation chez les oiseaux. Alauda, 15:1–15.Google Scholar
  40. Radinsky, L.B., 1967, Relative brain size: a new measure. Science, 155:838.CrossRefGoogle Scholar
  41. Radinsky, L.B., 1970. The fossil evidence of prosimian brain evolution. In, The Primate Brain, C.R. Noback, and W. Montagna, eds., Appleton-Century-Crofts, York, pp. 209–224.Google Scholar
  42. Radinsky, L.B., 1977, Early primate brains: facts and fiction. J. Hum. Evol., 6:79–86.CrossRefGoogle Scholar
  43. Rubner, M., 1883, Über den Einfluss der Körpergrösse auf Stoff-und Kraftwechsel. Z. Biol., 19:535–562.Google Scholar
  44. Rudder, B.C.C., 1979. The Allometry of Primate Reproductive Parameters, Ph. D. Thesis, University of London.Google Scholar
  45. Sacher, G.A. and Staffeidt, E.F., 1974, Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. Am. Nat., 108:593–616.CrossRefGoogle Scholar
  46. Schmidt-Nielsen, K., 1970, Energy metabolism, body size and problems of scaling. Fed. Proc, 29:1524–1532.Google Scholar
  47. Schmidt-Nielsen, K., 1972, Locomotion: energy cost of swimming, flying and running. Science, 177:222–228.CrossRefGoogle Scholar
  48. Stahl, W.R., 1962, Similarity and dimensional method in biology. Science, 137:205–212.CrossRefGoogle Scholar
  49. Stahl, W.R., 1963, The analysis of biological similarity. Adv. Biol. Med. Phys., 9:355–464.Google Scholar
  50. Stahl, W.R., 1967, Scaling of respiratory variables in mammals. J. Appl. Physiol., 22:453–460.Google Scholar
  51. Stephan, H., 1972. Evolution of primate brains: a comparative anatomical investigations. In, Evolutionary Biology of Primates, R. Tuttle, ed., Aldine-Atherton, Chicago, pp. 155–174.Google Scholar
  52. Stephan, H., Bauchot, R. and Andy, O.J., 1970. Data on size of the brain and of various brain parts in insectivores and primates. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 289–297.Google Scholar
  53. Swindler, D.R., 1976. Dentition of Living Primates, Academic Press, New York.Google Scholar
  54. von Bonin, G., 1937, Brain-weight and body-weight of mammals. J. Gen. Physiol., 16:379–389.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. D. Martin
    • 1
  1. 1.Department of AnthropologyUniversity CollegeLondon WCIEngland

Personalised recommendations