Advertisement

Reconstructing the Evolution of the Brain in Primates Through the Use of Comparative Neurophysiological and Neuroanatomical Data

  • John Allman

Abstract

In his influential book, The Antecedents of Man, Le Gros Clark (1962) maintained that the order Primates cannot be defined by specific attributes that uniquely distinguish its members from the members of other orders but rather can only be characterized by evolutionary trends such as the progressive expansion of the brain. Recent neurophysiological and neuroanatomical data suggest that at least one unique defining feature for the order Primates does exist. In all mammals the retina projects to the optic tectum, but the manner in which the visual field is represented in the optic tectum of Primates differs from that found in all other mammals. In Primates the optic tectum on each side of the brain contains a systematic representation of the contralateral half of the visual field, whereas in other mammals the optic tectum of each side contains a systematic representation of the visual field that is viewed by the contralateral retina, which is the primitive vertebrate condition found in all non-mammalian vertebrates (see Fig. 1). The drawback in using such neurophysiological criteria in taxonomic definitions is that it is not possible to survey a very large number of species for a particular attribute, and the method cannot be applied to fossils.

Keywords

Superior Colliculus Visual Area Optic Tectum Tree Shrew Middle Temporal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggleton, J.P., Burton, M.J., and Passingham, R.E., 1980, Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res., 190:347–368.CrossRefGoogle Scholar
  2. Allman, J.M., 1977. Evolution of the visual system in the early primates. In, Progress in Psychobiology, Physiology and Psychology, vol. 7, J.M. Sprague and A.N. Epstein, eds., Academic Press, New York.Google Scholar
  3. Allman, J.M., and Kaas, J.H., 1971a, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res., 31:84–105.CrossRefGoogle Scholar
  4. Allman, J.M., and Kaas, J.H., 1971b, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res., 35:89–106.CrossRefGoogle Scholar
  5. Allman, J.M., and Kaas, J.H., 1974a, The organization of the second visual area (V-II) in the owl monkey: A second order transformation of the visual hemifield. Brain Res., 76:247-265. Allman, J.M., and Kaas, J.H., 1974b. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res., 81:199–213.CrossRefGoogle Scholar
  6. Allman, J.M., and Kaas, J.H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res., 100:473–487.CrossRefGoogle Scholar
  7. Allman, J.M., and Kaas, J.H., 1976, Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey, Science, 191:572–575.CrossRefGoogle Scholar
  8. Allman, J.M., Campbell, C.B.G., and McGuinness, E., 1979, The dorsal third tier area in Galago senegalensis. Brain Res., 179:355–361.CrossRefGoogle Scholar
  9. Allman, J.M., Kaas, J.H., and Lane, R.H., 1973, The middle temporal visual area (MT) in the bushbaby, Galago senegalensis. Brain Res., 57:197–202.CrossRefGoogle Scholar
  10. Baker, J.F., Gibson, A., Glickstein, M., and Stein, J., 1976, Visual cells in the pontine nuclei of the cat. J. Physiol. (Lond.), 255:415–433.Google Scholar
  11. Baker, J.F., Petersen, S.E., Newsome, W.T., and Allman, J.M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus). A quantitative comparison of the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) areas. J. Neurophysiol., 45:397–416.Google Scholar
  12. Bodian, D., 1937, An experimental study of the optic tracts and retinal projection of the Virginia opossum. J. Comp. Neurol., 66:133–144.CrossRefGoogle Scholar
  13. Campbell, C.B.G., 1966, The relationships of tree shrews: The evidence of the nervous system. Evolution, 20:276–281.CrossRefGoogle Scholar
  14. Campbell, C.B.G., 1974, On the phyletic relationships of tree shrews. Mammal Rev., 4:125–143.CrossRefGoogle Scholar
  15. Campbell, C.B.G., and Hayhow, W.R., 1971, Primary optic pathways in the echidna, Tachyglossus aculeatus: An experimental degeneration study. J. Comp. Neurol., 143:119–136.CrossRefGoogle Scholar
  16. Campbell, C.B.G., Jane, J.A., and Yashon, D., 1967, The retinal projections of the tree shrew and hedgehog. Brain Res., 5:406–418.CrossRefGoogle Scholar
  17. Campos-Ortega, J.A., 1970, The distribution of retinal fibres in the brain of the pig. Brain Res., 19:306–312.CrossRefGoogle Scholar
  18. Campos-Ortega, J.A., and Glees, P., 1967, The termination of ipsilateral and contralateral optic fibers in the lateral geniculate body of Galago crassicaudatus. J. Comp. Neurol., 129:279–284.CrossRefGoogle Scholar
  19. Cartmill, M., 1972. Arboreal adaptations and the origin of the order Primates, In, The Functional and Evolutionary Biology of Primates, R. H. Tuttle, ed., Aldine, Atherton, Chicago, pp. 97–122.Google Scholar
  20. Cartmill, M., 1974, Rethinking primate origins. Science, 184:436–443.CrossRefGoogle Scholar
  21. Cartmill, M., 1975. Primate Origins, Burgess, Minneapolis.Google Scholar
  22. Clutton-Brock, T.H., and Harvey, P.H., 1980, Primates, brains and ecology. J. Zool. (Lond.), 190:309–323.CrossRefGoogle Scholar
  23. Cummings, J.F., and de Lahunta, A., 1969, An experimental study of the retinal projections in the horse and sheep. Ann. N.Y. Acad. Sci., 157:293–318.CrossRefGoogle Scholar
  24. Cynader, M., and Berman, N., 1972, Receptive field organization of monkey superior colliculus. J. Neurophysiol., 35:187–201.Google Scholar
  25. DeBruyn, E.J., Wise, V.L., and Casagrande, V.A., 1980, The size and topographic arrangement of retinal ganglion cells in the Galago. Vision Res., 20:315–328.CrossRefGoogle Scholar
  26. Desimone, R., and Gross, C.G., 1979, Visual area: the temporal artery of the macque, Brain Res., 178:363–380.CrossRefGoogle Scholar
  27. Desimone, R., and Gross, C.G., 1980, Visual properties of inferior temporal cortex in the macaque. Exp. Brain Res., 41:818–819.Google Scholar
  28. Desimone, R., Fleming, J., and Gross, C.G., 1980, Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res., 184:41–55.CrossRefGoogle Scholar
  29. Drager, U., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res., 82:284–292.CrossRefGoogle Scholar
  30. Drager, U., and Hubel, D.H., 1975, Responses to visual stimulation and relationship between visual, auditory and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 38:690–713.Google Scholar
  31. Feldon, S., Feldon, P., and Kruger, L., 1970, Topography of the retinal projection upon the superior colliculus of the cat. Vision Res., 10:135–143.CrossRefGoogle Scholar
  32. Gaze, R.M., 1958, The representation of the retina on the optic lobe of the frog. Quart. J. Exp. Physiol., 43:209–214.Google Scholar
  33. Giolli, R.A., and Guthrie, M.D., 1969, The primary optic projections in the rabbit. An experimental degeneration study. J. Comp. Neurol., 136:99–126.CrossRefGoogle Scholar
  34. Giolli, R.A., and Tigges, J., 1970. The primary optic pathways and nuclei of primates. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 29–54.Google Scholar
  35. Glickstein, M., Cohen, J., Dixon, B., Gibson, A., Hollins, M., La Bossiere, E., and Robinson, F., 1980, Corticopontine visual projection in the macaque monkey. J. Comp. Neurol., 190:209–230.CrossRefGoogle Scholar
  36. Gross, C.G., 1973, Inferotemporal cortex and vision. Prog. Physiol. Psychol., 5:77–115.Google Scholar
  37. Gross, C.G., Bruce, C.J., Desimone, R., Fleming, J., and Gattas, R., 1981. Three visual areas of the temporal lobe. In, Multiple Cortical Areas, C.N. Woolsey, ed., Humana Press, Englewood Cliffs, N.J., in press.Google Scholar
  38. Heric, T.M., and Kruger, L., 1965, Organization of the visual projection upon the optic tectum of a reptile (Alligator mississippiensis). J. Comp. Neurol., 124:101–111.CrossRefGoogle Scholar
  39. Hershkovitz, P., 1977. Living New World Monkeys (Platyrrhini), vol. 1, Univ. Chicago Press, Chicago.Google Scholar
  40. Hill, W.C.O., 1953. Primates. Comparative Anatomy and Taxonomy. I. Strepsirhini, University of Edinburgh Press, Edinburgh.Google Scholar
  41. Hubel, D.H., LeVay, S., and Wiesel, T.N., 1975, Mode of termination of retinotectal fibers in macaque monkey: An autoradiographic study. Brain Res., 96:25–40.CrossRefGoogle Scholar
  42. Imig, T.J., Ruggero, M.A., Kitzes, L.M., Javel, E., and Brugge, J.F., 1977, Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J. Comp. Neurol., 171:111–128.CrossRefGoogle Scholar
  43. Innis, R.B., Correa, F.M.A., Uhl, G.R., Schneider, B., and Snyder, S.H., 1979, Cholecystokinin octapeptide-like immunoreactivity: Histochemical localization in rat brain. Proc. Natl. Acad. Sci. USA, 76:521–525.CrossRefGoogle Scholar
  44. Jacobson, M., 1962, The representation of the retina on the optic tectum of the frog. Correlation between retinotectal magnification factor and retinal ganglion cell count. Quart. J. Exp. Physiol., 47:170–178.Google Scholar
  45. Jacobson, M., and Gaze, R.M., 1965, Types of visual response from single units in the optic tectum and optic nerve of goldfish. Quart. J. Exp. Physiol., 49:199–209.Google Scholar
  46. Jerison, H.J., 1973. Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  47. Kaas, J.H., Guillery, R.W., and Allman, J.M., 1972. Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav. Evol., 6;253–299.CrossRefGoogle Scholar
  48. Kaas, J.H., Hall, W.C., and Diamond, I.T., 1970, Cortical visual areas I and II in the hedgehog: Relation between evoked potential maps and architectonic subdivisions. J. Neurophysiol., 33:595–615.Google Scholar
  49. Kadoya, S., Wolin, L.R., and Massopust, L.C., 1971, Photically evoked unit activity in the tectum opticum of the squirrel monkey. J. Comp. Neurol., 142:495–508.CrossRefGoogle Scholar
  50. Kanaseki, T., and Sprague, J.M., 1974, Anatomical organization of pretectal nuclei and tectal laminae in the cat. J. Comp. Neurol., 158:319–338.CrossRefGoogle Scholar
  51. Laemle, L.K., 1968, Retinal projections of Tupaia glis. Brain Behav. Evol., 1:473–499.CrossRefGoogle Scholar
  52. Laemle, L.K., and Noback, C.R., 1970, The visual pathways of the lorisid lemurs (Nycticebus coucang and Galago crassicaudatus). J. Comp. Neurol., 138:49–62.CrossRefGoogle Scholar
  53. Lane, R.H., Allman, J.M., and Kaas, J.H., 1971, Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus carolinensis) and the tree shrew (Tupaia glis). Brain Res., 26:277–292.Google Scholar
  54. Lane, R.H., Allman, J.M., Kaas, J.H., and Miezin, F.M., 1973, The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus) and the bushbaby (Galago senegalensis). Brain Res, 60:335–349.CrossRefGoogle Scholar
  55. Lane, R.H., Kaas, J.H., and Allman, J.M., 1974, Visuotopic organization of the superior colliculus in normal and Siamese cats. Brain Res., 70:413–430.CrossRefGoogle Scholar
  56. Le Gros Clark, W.E., 1962. The Antecedents of Man, University of Edinburgh Press, Edinburgh.Google Scholar
  57. Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., and Fuchs, A.F., 1976, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol., 164:287–304.CrossRefGoogle Scholar
  58. Martin, R.D., 1968, Towards a new definition of primates. Man, 3:377–401.CrossRefGoogle Scholar
  59. Martin, R.D., 1973, Comparative anatomy and primate systematics. Symp. Zool. Soc. London, 33:301–337.Google Scholar
  60. Martin, R.D., 1979. Phylogenetic aspects of prosimian behavior. In, The Study of Prosimian Behavior, G.A. Doyle and R.D. Martin, eds., Academic Press, New York.Google Scholar
  61. Meadows, J.C., 1974, The anatomical basis of prosopagnosia. J. Neurol. Neurosurg. Psychiatr., 37:489–501.CrossRefGoogle Scholar
  62. Merzenich, M.M., Kaas, J.H., Sur, M., and Lin, C.S., 1978, Double representation of the body surface within cytoarchitectonic areas 3b and 1 in SI in the owl monkey (Aotus trivirgatus). J. Comp. Neurol., 181:41–74.CrossRefGoogle Scholar
  63. Myerson, J., Manis, P.B., Miezin, F.M., and Allman, J.M., 1977, Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison. Science, 198:855.CrossRefGoogle Scholar
  64. Newsome, W.T., and Allman, J.M., 1980, The interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis. J. Comp. Neurol., 194:209–234.CrossRefGoogle Scholar
  65. Newsome, W.T., Maunsell, J.H.R., and Van Essen, D.C., 1980, Areal boundaries and topographic organization of the ventral posterior area (VP) of the macaque monkey. Soc. Neurosci. Abstr., 6:579.Google Scholar
  66. Palmer, L.A., Rosenquist, A.C., and Tusa, R.J., 1978, The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol., 177:237–256.CrossRefGoogle Scholar
  67. Pearson, L.J., Sanderson, K.J., and Wells, R.T., 1976, Retinal projections in the ringtailed possum Pseudocheirus peregrinus. J. Comp. Neurol., 170:227–240.CrossRefGoogle Scholar
  68. Penfield, W., and Roberts, L.A., 1959. Speech and Brain Mechanisms, Princeton Univ. Press, Princeton.Google Scholar
  69. Perrett, D.I., Rolls, E.T., and Caan, W., 1979, Temporal lobe cells of the monkey with visual responses selective for faces. Neurosci. Lett., 53:358.Google Scholar
  70. Petersen, S.E., Baker, J.F., and Allman, J.M., 1980, Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey. Brain Res., 197:507–511.CrossRefGoogle Scholar
  71. Polyak, S.D., 1957. The Vertebrate Visual System, Univ. of Chicago Press, Chicago.Google Scholar
  72. Radinsky, L.B., 1967, The oldest primate endocast. Am. J. Phys. Anthropol., 27:385–388.CrossRefGoogle Scholar
  73. Radinsky, L.B., 1970. The fossil evidence of prosimian brain evolution. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 209–224.Google Scholar
  74. Radinsky, L.B., 1977, Early primate brains: Facts and fiction. J. Hum. Evol., 6:79–86.CrossRefGoogle Scholar
  75. Rockel, A.J., Heath, C.J., and Jones, E.G., 1972, Afferent connections to the diencephalon in the marsupial phalanger and the question of sensory convergence in the “posterior group” of the thalamus. J. Comp. Neurol., 145:105–130.CrossRefGoogle Scholar
  76. Romer, A.S., 1966. Vertebrate Paleontology, 3rd ed., Univ. Chicago Press, Chicago.Google Scholar
  77. Sanghera, M.K., Rolls, E.T., and Roper-Hall, A., 1979, Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol., 63:610–626.CrossRefGoogle Scholar
  78. Sanides, F., 1970. Functional architecture of motor and sensory cortices in primates in light of a new concept of neocortical evolution. The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 137–208.Google Scholar
  79. Schilling, A., 1979. Olfactory communication in prosimians. In, The Study of Prosimian Behavior, G.A. Doyle and R.D. Martin, eds., Academic Press, New York.Google Scholar
  80. Schwassmann, H.O., and Kruger, L., 1965, Organization of the visual projection upon the optic tectum of some fresh water fish. J. Comp. Neurol., 124:113–126.CrossRefGoogle Scholar
  81. Sebeok, T.A., 1977. How Animals Communicate, Indiana University Press, Bloomington.Google Scholar
  82. Siminoff, R., Schwassman, H.O., and Kruger, L., 1966, An electrophysiological study of the visual projection to the superior colliculus of the rat. J. Comp. Neurol., 127:435–444.CrossRefGoogle Scholar
  83. Spatz, W.B., 1975, An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Res., 92:450–455.CrossRefGoogle Scholar
  84. Spatz, W.B., and Tigges, J., 1972, Experimental-anatomical studies on the “Middle Temporal Visual Area (MT)” in primates. I. Efferent cortical connections in the marmoset (Callithrix jacchus). J. Comp. Neurol., 146:451–463.CrossRefGoogle Scholar
  85. Stephan, H., and Andy, O.J., 1970. The allocortex in primates. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 109–135.Google Scholar
  86. Tiao, Y.-C., and Blakemore, C., 1976, Functional organization in the superior colliculus of the golden hamster. J. Comp. Neurol., 168:483–504.CrossRefGoogle Scholar
  87. Tigges, J., 1966, Ein experimenteller Beitrag zum subkortikalen optischen System von Tupaia glis. Folia Primatologia, 4:103–123.CrossRefGoogle Scholar
  88. Tigges, J., 1970, Retinal projection to subcortical optic nuclei in diurnal and nocturnal squirrels. Brain Behav. Evol., 3:121–134.CrossRefGoogle Scholar
  89. Tigges, J., and O’Steen, W., 1974, Termination of retinofugal fibers in squirrel monkey: A re-investigation using autoradiographic methods. Brain Res., 79:489–495.CrossRefGoogle Scholar
  90. Tigges, J., Bos, J., and Tigges, M., 1977, An autoradiographic investigation of the subcortical visual system in chimpanzee. J. Comp. Neurol., 172:367–380.CrossRefGoogle Scholar
  91. Tigges, J., Tigges, M., and Kalaha, C.S., 1973, Efferent connections of area 17 in Galago. Am. J. Phys. Anthropol., 38:393–398.CrossRefGoogle Scholar
  92. Tigges, M., and Tigges, J., 1970, The retinofugal fibers and their terminal nuclei in Galago crassicaudatus (primates). J. Comp. Neurol., 138:87–102.CrossRefGoogle Scholar
  93. Turner, B.H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J. Comp. Neurol., 191:515–543.CrossRefGoogle Scholar
  94. Tusa, R.J., and Palmer, L.A., 1980. The retinotopic organization of area 20 and 21 in the cat. J. Comp. Neurol., in press.Google Scholar
  95. Ungerleider, L.G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization. J. Comp. Neurol., 188:347–366.CrossRefGoogle Scholar
  96. Updyke, B.V., 1974, Characteristics of unit responses in superior colliculus of the Cebus monkey. J. Neurophysiol., 37:896–909.Google Scholar
  97. Van Buren, J.M., 1963. The Retinal Ganglion Cell Layer, Charles C Thomas, Springfield.Google Scholar
  98. Van Essen, D.C., 1979. Visual cortical areas. In, Ann. Rev. Neurosci., W.M. Cowan, ed., Ann. Reviews, Inc., Palo Alto.Google Scholar
  99. Van Essen, D.C., and Zeki, S.M., 1978, The topographic organization of rhesus monkey prestriate cortex. J. Physiol. Lond., 277:193.Google Scholar
  100. Van Essen, D.C., Maunsell, J.H.R., and Bixby, J.L., 1980. The organization of extrastriate visual areas in the macaque monkey. In, Multiple Cortical Areas, C.N. Woolsey, ed., Humana Press, Englewood Cliffs, N.J., in press.Google Scholar
  101. Volchan, E., Rocha-Miranda, C.E., Lent, R., and Gawryszewski, L.G., 1978. The retinotopic organization of the superior colliculus in the opossum (Didelphis marsupialis aurita). In, Opossum Neurobiology, C.E. Rocha-Miranda and R. Lent, eds., Academia Brasileira de Ciencias, Rio de Janeiro.Google Scholar
  102. Weiler, R.E., and Kaas, J.H., 1980. Connections of the dorsolateral visual area (DL) of extrastriate visual cortex of the owl monkey (Aotus trivirgatus). Soc. Neurosci. Abstr., in press.Google Scholar
  103. Wilson, E.O., 1975. Sociobiology, Harvard University Press, Cambridge, Mass.Google Scholar
  104. Zeki, S.M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. Lond., 236:549.Google Scholar
  105. Zeki, S.M., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc. Roy. Soc. Lond. B. 207:239.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • John Allman
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations