Advertisement

On the Origin and Progressive Evolution of the Triune Brain

  • Paul D. MacLean

Abstract

That the cerebral hemispheres are requisite for the spontaneous, directed activities of terrestrial vertebrates has been well known since the last century. As Ferrier (1876) noted, if a decerebrated animal “be left to itself, undisturbed by any form of external stimulus, it remains fixed and immovable on the same spot, and unless artificially fed, dies of starvation....” As has since been repeatedly confirmed, the neuraxis below the level of the hemispheres contains the neural apparatus required for posture and locomotion and the integrated performance of bodily actions involved in self-preservation and procreation. Since the cerebral hemispheres are essential for psychological functions, they may appropriately be referred to as the psychencephalon.

Keywords

Limbic System Squirrel Monkey Hippocampal Formation Maternal Behavior Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D.G., and Cowan, W.M., 1980, Subcortical afférents to the hippocampal formation in the monkey. J. Comp. Neurol., 189:573–591.CrossRefGoogle Scholar
  2. Auffenberg, W., 1972, Komodo dragons. Natl. Hist., 81:52–59.Google Scholar
  3. Auffenberg, W., 1978. Social and feeding behavior in Varanus komodensis. In, The Behavior and Neurology of Lizards, N. Greenberg and P.D. MacLean, eds., U.S. Government Printing Office, Washington, D.C., DHEW Publication No. (ADM) 77-491, pp. 301-331.Google Scholar
  4. Barnett, S.A., 1963. A Study in Behaviour, Methuen & Co. Ltd., London.Google Scholar
  5. Bleier, R., 1969, Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages. Brain Res., 15:365–393.CrossRefGoogle Scholar
  6. Brink, A.S., 1958, Note on a new skeleton of Thrinaxodon liorhiruis. Paleontologia Africiana, 6:15–22.Google Scholar
  7. Broca, P., 1878. Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la serie des mammifères. Rev. Anthrop., 1:Ser. 2, 385-498.Google Scholar
  8. Broom, R., 1932. The Mammal-Like Reptiles of South Africa and the Origin of Mammals, H.F. and G. Witherby, London.Google Scholar
  9. Carlsson, A., Falck, B., and Hillarp, N.A., 1962, Cellular localization of brain monoamines. Acta Physiol. Scand., 56:1–28.CrossRefGoogle Scholar
  10. Colbert, E.H., 1969. Evolution of the Verterates, John Wiley & Sons, Inc., New York.Google Scholar
  11. Colbert, E.H., 1972, Antarctic fossils and the reconstruction of Gondwanaland. Natl. Hist., 81:66–73.Google Scholar
  12. Coren, S., and Porac, C., 1977, Fifty centuries of right-handedness: The historical record. Science, 198:631–632.CrossRefGoogle Scholar
  13. Crosby, E.C., Humphrey, T., and Lauer, E., 1962. Correlative Anatomy of the Nervous System, Macmillan, New York.Google Scholar
  14. Dart, R.A., 1959. Adventures with the Missing Link, The Institutes Press, The Institutes for the Achievement of Human Potential, Philadelphia.Google Scholar
  15. Falck, B., 1962. Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol. Scand. Suppl., 197.Google Scholar
  16. Falck, B., Hillarp, N.A., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem., 10:348–354.CrossRefGoogle Scholar
  17. Ferrier, D., 1876. The Functions of the Brain, Smith, Elder, London.CrossRefGoogle Scholar
  18. Fossey, D., 1976. The behavior of the mountain gorilla. Doctoral dissertation, University of Cambridge, 460 pp.Google Scholar
  19. Freeman, W., and Watts, J., 1950. Psychosurgery in the Treatment of Mental Disorders and Intractable Pain, Charles C Thomas, Springfield, Illinois.Google Scholar
  20. Greenberg, B., and Noble, G.K., 1944, Social behavior of the American chameleon (Anolis carolinesis Voigt). Physiol. Zool., 14:392–439.Google Scholar
  21. Greenberg, N., MacLean, P.D., and Ferguson, J.L., 1979, Role of the paleostriatum in species-typical display behavior of the lizard (Anolis carolinesis). Brain Res., 172:229–241.CrossRefGoogle Scholar
  22. Hallowitz, R.A., and MacLean, P.D., 1977, Effects of vagal volleys on units of intralaminar and juxtalaminar thalamic nuclei in monkeys. Brain Res., 130:271–286.CrossRefGoogle Scholar
  23. Heimer, L., 1978. The olfactory cortex and the ventral striatum. In, Limbic Mechanisms, K.E. Livingston and O. Hornykiewizc, eds., Plenum Press, New York, 195–197.Google Scholar
  24. Herkenham, M., 1978, The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol., 177:589–610.CrossRefGoogle Scholar
  25. Herrick, C.J., 1948. The Brain of the Tiger Salamander, Chicago, University of Chicago Press.Google Scholar
  26. Hogben, L., 1937. Mathematics for the Million, W.W. Norton and Co., New York.Google Scholar
  27. Irving, E., 1977, Drift of the major continental blocks since the Devonian. Nature, 270:304–309.CrossRefGoogle Scholar
  28. Jurgens, U., and Ploog, D., 1970, Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res., 10:532–554.CrossRefGoogle Scholar
  29. Lawick-Goodall, J.V., 1971. In the Shadow of Man, Houghton Mifflin Co., Boston.Google Scholar
  30. Le Gros Clark, W.E., and Meyer, M., 1950, Anatomical relationships between the cerebral cortex and hypothalamus. Br. Med. Bull., 6:341.Google Scholar
  31. Ma, N.S.F., Jones, T.C., Thorington, R.W. and Cooper, R.W., 1974, Chromosome banding patterns in squirrel monkeys (Saimiri sciureus). J. Med. Primatol., 3:120–137.Google Scholar
  32. MacLean, P.D., 1952, Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroenceph. Clin. Neurophysiol., 4:407–418.CrossRefGoogle Scholar
  33. MacLean, P.D., 1954. Studies on limbic system (“visceral brain”) and their bearing on psychosomatic problems. In, Recent Developments in Psychosomatic Medicine, E. Wittkower, eds., Sir Isaac Pitman and Sons, London, pp. 101–125.Google Scholar
  34. MacLean, P.D., 1958, Contrasting functions of limbic and neocortical systems of the brain and their relevance to psychophysiological aspects of medicine. Am. J. Med., 25:611–626.CrossRefGoogle Scholar
  35. MacLean, P.D., 1964, Mirror display in the squirrel monkey, Saimiri sciureus. Science, 146:950–952.CrossRefGoogle Scholar
  36. MacLean, P.D., 1967, The brain in relation to empathy and medical education. J. Nerv. Ment. Dis., 144:374–382.CrossRefGoogle Scholar
  37. MacLean, P.D., 1970. The triune brain, emotion, and scientific bias. In, The Neurosciences Second Study Program, F.O. Schmitt, ed., The Rockefeller University Press, New York, 336–349.Google Scholar
  38. MacLean, P.D., 1973a. A triune concept of the brain and behavior. In, The Hincks Memorial Lectures, T. Boag and D. Campbell, eds., University of Toronto Press, Toronto, pp. 6–66.Google Scholar
  39. MacLean, P.D., 1973b, The brain’s generation gap: Some human implications. Zygon J. Relig. Sci., 8:113–127.CrossRefGoogle Scholar
  40. MacLean, P.D., 1975a. On the evolution of three mentalities. Man-Environment Systems, 5:213. Reprinted in Human Evolution; Biosocial Perspectives, S.L. Washburn and C.R. McCown, eds., Benjamin Cummings, Menlo Park, California, 1978, pp. 33-57.Google Scholar
  41. MacLean, P.D., 1975b, Role of pallidal projections in species-typical display behavior of squirrel monkey. Trans. Am. Neurol. Assoc, 100:29–32.Google Scholar
  42. MacLean, P.D., 1977. An evolutionary approach to brain research on prosematic (nonverbal) behavior. In, Reproductive Behavior and Evolution, J.S. Rosenblatt and B.R. Komisarus, eds., Plenum Press, New York, 137–164.Google Scholar
  43. MacLean, P.D., 1978a, Effects of lesions of globus pallidus on species-typical display behavior of squirrel monkeys. Brain Res., 149:175–196.CrossRefGoogle Scholar
  44. MacLean, P.D., 1978b. A Mind of Three Minds: Educating the Triune Brain, Seventy-seventh Yearbook of the National Society for the Study of Education, University of Chicago Press, Chicago, Illinois, pp. 308–342.Google Scholar
  45. MacLean, P.D., 1981. Role of transhypothalamic pathways in social communication. In, Handbook of the Hypothalamus, P. Morgane and J. Panksepp, eds., Vol. 3, Marcel Dekker, New York, pp. 259–287.Google Scholar
  46. MacLean, P.D., and Ploog, D.W., 1962, Cerebral representation of penile erection. J. Neurophysiol., 25:29–55.Google Scholar
  47. Mehler, W.R., 1980, Subcortical afferent connections of the amygdala in the monkey. J. Comp. Neurol., 190:733–762.CrossRefGoogle Scholar
  48. Meibach, R.C., and Siegel, A., 1977, Efferent connections of the hippocampal formation in the rat. Brain Res., 124:197–224.CrossRefGoogle Scholar
  49. Miller, N., and Dollard, J., 1941. Social Learning and Imitation, Yale University Press, New Haven.Google Scholar
  50. Milner, B., Corkin, S. and Teuber, H.-L., 1968, Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6:215–234.CrossRefGoogle Scholar
  51. Montagu, A., 1956. The Biosocial Nature of Man, Grove Press, New York.Google Scholar
  52. Moore, R.Y., and Halaris, A.E., 1975, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J. Comp. Neurol., 164:171–184.CrossRefGoogle Scholar
  53. Morest, D.K., 1961, Connexions of dorsal tegmental nucleus in rat and rabbit. J. Anat., 95:229–246.Google Scholar
  54. Morest, D.K., 1967, Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J. Comp. Neurol., 130:277–299.CrossRefGoogle Scholar
  55. Murphy, M.R., MacLean, P.D., and Hamilton, S.C., 1981, Species-typical behavior of hamsters deprived from birth of neocortex. Science, 213:459–461., 1981.CrossRefGoogle Scholar
  56. Nauta, W.J.H., and Domesick, V.B., 1978. Crossroads of limbic and striatal circuitry: Hypothalamo-nigral connections. In, Limbic Mechanisms, K.E. Livingston and O. Hornykiewicz, eds., Plenum Press, New York, pp. 75–93.Google Scholar
  57. Newman, J., and MacLean, P.D., 1981. Effects of tegmental lesions on the isolation call of squirrel monkeys. Brain Res. (in press).Google Scholar
  58. Nomura, S., Mizuno, N., Itoh, K., Matsuda, K., Sugimoto, T. and Nakamura, Y., 1979, Localization of parabrachial nucleus neurons projecting to the thalamus or the amygdala in the cat using horseradish peroxidase. Exp. Neurol., 64:375–385.CrossRefGoogle Scholar
  59. Norgren, R., 1976, Taste pathways to hypothalamus and amygdala. J. Comp. Neurol., 166:17–30.CrossRefGoogle Scholar
  60. Paasonen, M.K., MacLean, P.D. and Giarman, N.J., 1957, 5-Hydroxytryptamine (serotonin, enteramine) content of structures of the limbic system. J. Neurochem., 1:326–333.CrossRefGoogle Scholar
  61. Paasonen, M.K., and Vogt, O., 1956, The effect of drugs on the amounts of substance? and 5-hydroxytryptamine in mammalian brain. J. Physiol., 131:617–626.Google Scholar
  62. Parent, A., and Olivier, A., 1970, Comparative histochemical study of the corpus striatum. J. Hirnforsch., 12:75–81.Google Scholar
  63. Pasquier, D.A. and Reinoso-Suarez, F., 1977, Differential efferent connections of the brain stem to the hippocampus in the cat. Brain Res., 120:540–548.CrossRefGoogle Scholar
  64. Penfield, W., and Jasper, H., 1954. Epilepsy and the Functional Anatomy of the Human Brain, Little, Brown, and Co., Boston.Google Scholar
  65. Penfield, W., and Milner, B., 1958, Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch. Neurol. Psychiat., 79:475–497.Google Scholar
  66. Pert, C.B., and Snyder, S.H., 1973, Opiate receptor: Demonstration in nervous tissue. Science, 179:1011–1014.CrossRefGoogle Scholar
  67. Pickel, V.M., Segal, M., and Bloom, F.E., 1974, A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol., 155:15–42.CrossRefGoogle Scholar
  68. Poletti, C.E., Kinnard, M.A., and MacLean, P.D., 1973, Hippocampal influence on unit activity of hypothalamus, preoptic region, and basal forebrain in awake, sitting squirrel monkeys. J. Neurophysiol., 36:308–324.Google Scholar
  69. Ricardo, J.A., and Koh, E.T., 1978, Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res., 153:1–26.CrossRefGoogle Scholar
  70. Romer, A.S., 1966. Vertebrate Paleontology, The University of Chicago Press, Chicago.Google Scholar
  71. Segal, M., and Landis, S., 1974, Afférents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res., 78:1–15.CrossRefGoogle Scholar
  72. Slotnick, B.M., 1967, Disturbances of maternal behavior in the rat following lesions of the cingulate cortex. Behaviour, 24:204–236.CrossRefGoogle Scholar
  73. Stamm, J.S., 1955, The function of the median cerebral cortex in maternal behavior of rats. J. Comp. Physiol. Psychol., 48:347–356.CrossRefGoogle Scholar
  74. Swanson, L.W., and Cowan, W.M. 1975, Hippocampo-hypothalamic connections: Origin in subicular cortex, not Ammon’s horn. Science, 189:303–304.CrossRefGoogle Scholar
  75. Ungerstedt, U., 1971, Stereotaxic mapping fo the monoamine pathways in the rat brain. Acta Physiol. Scand., 367:1–48.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Paul D. MacLean
    • 1
  1. 1.Laboratory of Brain Evolution and BehaviorNational Institute of Mental HealthPoolesvilleUSA

Personalised recommendations