Mapping Fossil Endocasts

  • Dean Falk


One of the major themes of this volume is to underscore current efforts to synthesize the fields of comparative neurology and paleoneurology. In recent years, primate paleoneurologists have used cortical maps determined by neurophysiologists to interpret fossil endocasts (Falk, 1981; Gurche, this volume; Radinsky, 1972, 1975, 1979). As Galaburda and Pandya (this volume) point out, new information on architectonics and connections derived from comparative neurology should be incorporated into functional interpretations of fossil endocasts. The purpose of this paper is to review and, where necessary reinterpret, sulcal patterns of fossil primate endocasts in light of neurophysiological (Welker, 1976) and architectonic (Galaburda and Pandya, this volume) data.


Orbitofrontal Cortex World Monkey Spider Monkey Central Sulcus Comparative Neurology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariens-Kappers, C.U., Huber, G.C., and Crosby, E.C., 1960. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Hafner, New York.Google Scholar
  2. Connolly, C.J., 1950. External Morphology of the Primate Brain, Charles C Thomas, Springfield, Illinois.Google Scholar
  3. Coxe, W.S., Hirsch, J.E., Benjamin, R.M., Welker, W.L., Thompson, R.F., and Woolsey, C.M., 1957. Precentral and supplementary motor areas of Ateles. Physiologist, 1:19 (abstract).Google Scholar
  4. Crosby, E.C., Humphrey, T., and Lauer, E., 1962. Correlative Anatomy of the Nervous System, Macmillan, New York.Google Scholar
  5. Dart, R.A., 1925, Australopithecus africanus: The man-ape of South Africa. Nature Lond., 115:195–199.CrossRefGoogle Scholar
  6. Falk, D., 1978a, Cerebral asymmetry in Old World monkeys. Acta Anat., 101:334–339.CrossRefGoogle Scholar
  7. Falk, D., 1978b, External neuroanatomy of Old World monkeys (Ceroco-pithecoidea). Contrib. Primat., 15:1–95.Google Scholar
  8. Falk, D., 1980a, A reanalysis of the South African australopithecine natural endocasts. Am. J. Phys. Anthrop., 53:525–539.CrossRefGoogle Scholar
  9. Falk, D., 1980b. Comparative study of endocranial casts of New and Old World monkeys. In, Evolutionary Biology of the New World Monkeys and Continental Drift, R.L. Ciochon and B. Chiarelli, eds., Plenum, New York, pp. 275–292.Google Scholar
  10. Falk, D., 1980c, Language, handedness and primate brains: did the australopithecines sign? Am. Anthropol., 82:71–78.CrossRefGoogle Scholar
  11. Falk, D., 1981. Sulcal patterns of fossil Theropithecus baboons: phylogenetic and functional implications. Int. J. Primatol., in press.Google Scholar
  12. Fulton, J.F., and DeBarenne, J.G.D., 1933, The representation of the tail in the motor cortex of primates, with special reference to spider monkeys. J. Cell. Comp. Physiol., 2:399–426.CrossRefGoogle Scholar
  13. Galaburda, A.M., LeMay, M., Kemper, T.L., and Geschwind, N., 1978, Right-left asymmetries in the brain. Science, 199:852–856.CrossRefGoogle Scholar
  14. Hirsch, J.F., and Coxe, W.S., 1958, Representation of cutaneous tactile sensibility in cerebral cortex of Cebus. J. Neurophysiol., 21:481–498.Google Scholar
  15. Holloway, R.L., 1972. Australopithecine endocasts, brain evolution in the Hominoidea, and a model of hominid evolution. In, The Functional and Evolutionary Biology of Primates, R. Tuttle, ed., Aldine, Chicago, pp. 185–203.Google Scholar
  16. Holloway, R.L., 1975. The Role of Human Social Behavior in the Evolution of the Brain. Forty-third 3ames Arthur Lecture on the Evolution of the Human Brain. The American Museum of Natural History, New York.Google Scholar
  17. Jones, E.G. and Powell, T.P.S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 93:793–820.CrossRefGoogle Scholar
  18. Kochetkova, V., 1978. Paleoneurology, Wiley and Sons, New York.Google Scholar
  19. Krishnamurti, A., Sanides, F., and Welker, W.I., 1976, Microelectrode mapping of modality-specific somatic sensory cerebral neocortex in slow loris. Brain Behav. Evol., 13:267–283.CrossRefGoogle Scholar
  20. Le Gros Clark, W.E., Cooper, D.M., and Zuckerman, S., 1936, The endocranial cast of the chimpanzee. J.R. Anthrop. Inst., 66:249–268.Google Scholar
  21. Petersen, M.R., Beecher, M.D., Zoloth, S.R., Moody, D.B., and Stebbins, W.C., 1978, Neural lateralization of species-specific vocalizations by Japenese macaques (Macaca fuscata). Science, 202:324–326.CrossRefGoogle Scholar
  22. Pubols, B.H., and Pubols, L.M., 1971, Somatotopic organization of spider monkey somatic sensory cerebral cortex. J. Comp. Neurol., 141:63–76.CrossRefGoogle Scholar
  23. Radinsky, L.B., 1972. Endocasts and studies of primate brain evolution. In, The Functional and Evolutionary Biology of Primates, Aldine, Chicago, pp. 175-184.Google Scholar
  24. Radinsky, L.B., 1973, Aegyptopithecus endocasts: oldest record of a pongid brain. Am. J. Phys. Anthropol., 39:239–248.CrossRefGoogle Scholar
  25. Radinsky, L.B., 1975, Primate brain evolution. Am. Sci., 63:656–663.Google Scholar
  26. Radinsky, L.B., 1979. The Fossil Record of Primate Brain Evolution. Fortyninth James Arthur Lecture on the Evolution of the Human Brain. The American Museum of Natural History, New York.Google Scholar
  27. Sanides, F., and Krishnamurti, A., 1967, Cytoarchitectonic subdivisions of sensorimotor and pref rontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). J. Hirnforsch., 9:225–252.Google Scholar
  28. Vogt, O., and Vogt, O., 1919, Allgemeine Ergebnisse unserer Hirnforschung. J. Psychol. Neurol., 25:279–462.Google Scholar
  29. Walker, A.E., 1940, A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol., 73:59–86.CrossRefGoogle Scholar
  30. Welker, W.I., 1976, Mapping the brain. Historical trends in functional localization. Brain Behav. Evol., 13:327–343.CrossRefGoogle Scholar
  31. Welker, W.I., and Campos, G.B., 1963, Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. J. Comp. Neurol., 120:19–36.CrossRefGoogle Scholar
  32. Werner, G., and Whitsel, B.L., 1968, Topology of the body representation in somatosensory area I of primatess. J. Neurophysiol., 31:856–869.Google Scholar
  33. Woolsey, C.N., 1958. Organization of somatic sensory and motor areas of the cerebral cortex. In, Biological and Biochemical Bases of Behavior, H. Harlow, and C.N. Woolsey, eds., University of Wisconsin Press, Madison, pp. 63–81.Google Scholar
  34. Woolsey, C.N., 1964. Cortical localization as defined by evoked potiential and electrical stimulation studies. In, Cerebral Localization and Organization, G. Schaltenbrand and C.N. Woolsey, eds., University of Wisconsin Press, Madison, pp. 17–26.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Dean Falk
    • 1
  1. 1.Department of Anatomy and Caribbean Primate Research CenterUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico

Personalised recommendations