Role of Architectonics and Connections in the Study of Primate Brain Evolution

  • Albert M. Galaburda
  • Deepak N. Pandya


In the study of primate brain evolution a variety of gross anatomical features is customarily examined to trace changes in the brain among the different species. Thus, brain size and shape are measured, and aspects of cortical folding into lobes and gyri are carefully noted. Analyses of this type are particularly useful, if not altogether necessary, in the study of extinct brains by means of cranial endocasts. Such studies are remarkably limited, however, in their ability to provide information about interspecies homology. In smoother (lissencephalic) brains, for instance, this limitation is obvious. But even endocasts showing surface features of cortical folding can be an insurmountable challenge to statements of homology. On the one hand, the shape, depth and height of the folds varies considerably within a given species; on the other hand, different species often have similar surface topography. Furthermore, information is still insufficient concerning the functional meaning of shifts in surface markings, and even of gyri and sulci present in one species but not in others. Finally, the possibility exists that gyri having the same shape and occupying the same location in two species do, in fact, subserve different functions by nature of their different architecture and connectivity.


Superior Temporal Gyrus Inferior Parietal Lobule Middle Temporal Gyrus Superior Temporal Sulcus Sylvian Fissure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J.M., and Kaas, J.H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research, 31:85–105.CrossRefGoogle Scholar
  2. Broca, P., 1861. Remarques sur le siège de faculté de langage articule suivies d’une observation d’aphémie (perte de la parole). Bull. Soc. Anat. Paris, pp. 330-357.Google Scholar
  3. Brodmann, K., 1909. Vergleichende Lokalisationslehere der Grosshirnrinde, Barth, Leipzig.Google Scholar
  4. Clare, M.H., and Bishop, G.H., 1956, Potential wave mechanisms in the cat cortex. Electroencephalog. and Clin. Neurophysiol., 8:583–602.Google Scholar
  5. Cowan, W.M., Gottlieb, D.I., Hendrikson, A.E., Price, J.C., and Woolsey, T.A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research, 37:21–51.CrossRefGoogle Scholar
  6. Economo, C. von, 1925. The Cytoarchitectonics of the Human Cerebral Cortex, Oxford University Press, London.Google Scholar
  7. Forbes, B.F., and Moskowitz, N., 1977, Cortico-cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Research, 136:547–552.CrossRefGoogle Scholar
  8. Galaburda, A.M., 1980, La région de Broca: Observations anatomiques faites un siècle après la mort de son découvreur. Rev. Neurol., 136:609–616.Google Scholar
  9. Galaburda, A., and Sanides, F., 1980, Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol., 190:597–610.CrossRefGoogle Scholar
  10. Galaburda, A.M., Sanides, F., and Geschwind, N., 1978, Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch. Neurol., 35:812–817.CrossRefGoogle Scholar
  11. Geschwind, N., 1970, The organization of language and the brain. Science, 170:940–944.CrossRefGoogle Scholar
  12. Kesarev, V.S., Malofeyeva, L.I., and Trikova, O., 1977, Structural organization of the cerebral cortex in cetaceans. Arkhiv. Anatomii, Gistology Embriologii 73:23–30.Google Scholar
  13. LeMay, M., and Geschwind, N., 1975, Hemispheric differences in the brains of great apes. Brain Behav. Evol., 11:48–52.CrossRefGoogle Scholar
  14. Leonard, CM., 1969, The prefrontal cortex of the rat. I. Cortical projections of the mediodorsal nucleus. II. Efferent connections. Brain Research, 12:321–343.CrossRefGoogle Scholar
  15. Mesulam, M-M., 1976, Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: incubation parameters and visibility. J. Histochem. Cytochem., 24:1273–1280.CrossRefGoogle Scholar
  16. Meynert, T., 1865. Anatomie der Hirnrinde und ihre Verbindungsbahnen mit den empfindenden Oberflächen und den bewegenden Massen. M. Leidesdorf’s Lehrbuch der psychiat. Krankheiten, Erlangen.Google Scholar
  17. Pandya, D.N., and Sanides, F., 1973, Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Etwickl.-Gesch., 139:127–161.CrossRefGoogle Scholar
  18. Petersen, M.R., Beecher, M.D., Zoloth, S.R., Moody, D.B., and Stebbins, W.C., 1978, Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science, 202:324–326.CrossRefGoogle Scholar
  19. Premack, D., 1976, Language and intelligence in ape and man. Am. Scientist, 64:674.Google Scholar
  20. Rockel, A.J., Hiorns, R.W., and Powell, T.P.S., 1980, The basic uniformity in structure of the neocortex. Brain, 103:221.CrossRefGoogle Scholar
  21. Sanides, F., 1970. Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In, The Primate Brain. Advances in Primatology, vol. 1, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 137–208.Google Scholar
  22. Seltzer, B., and Pandya, D.N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research, 149:1–24.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Albert M. Galaburda
    • 1
  • Deepak N. Pandya
  1. 1.The Department of Neurology of Harvard Medical SchoolThe Neurological Units of the Beth Israel and Boston City HospitalsBostonUSA

Personalised recommendations