Mosaic Evolution in the Primate Brain: Differences and Similarities in the Hominoid Thalamus

  • Este Armstrong


Development of evolutionary hypotheses about the brain or central nervous system (CNS) in any particular taxon depends on solid comparative neurobiological data. Differences among closely related species are likely to be quantitative, and in comparative neuroanatomy a histological technique amenable for quantitative comparisons is a Nissl stain that colors all neuronal perikarya and glial nuclei. Nissl-stained serial sections throughout the brain permit identification of discrete populations of neurons according to their cytoarchitecture, i.e., the arrangement, orientation, density, and coloring features of the nerve cells. Measurements on and within architecturally distinct regions called nuclei or laminae can then be made (Armstrong, 1979; Bauchot, this volume; Zilles et al., this volume; Galaburda and Pandya, this volume).


Brain Size Brain Weight Medial Geniculate Body Lateral Geniculate Body Medial Dorsal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D.G. and Cowan W.M., 1980, Subcortical afférents to the hippocampal formation in the monkey. J. Comp. Neurol., 189:573–591.CrossRefGoogle Scholar
  2. Andrew, J. and Watkins, E.S., 1969. A Stereotaxic Atlas of the Human Thalamus and Adjacent Structures: a Variability Study, Williams and Wilkins, Baltimore.Google Scholar
  3. Andy, O.J. and Stephan, H., 1976. Septum development in primates. In, The Septal Nuclei, J.F. De France, ed., Adv. in Behav. Bio., Vol. 20, Plenum, New York, pp. 3–36.Google Scholar
  4. Armstrong, E., 1976. A quantitative comparison of the hominoid thalamus. Unpublished Ph. D. dissertation: Columbia University.Google Scholar
  5. Armstrong, E., 1979, A quantitative comparison of the hominoid thalamus: I. Specific sensory relay nuclei. Am. J. Phys. Anthrop. 52:405–419.CrossRefGoogle Scholar
  6. Armstrong, E., 1980a, A quantitative comparison of the hominoid thalamus: II. Limbic nuclei anterior principalis and lateralis dorsalis. Am. J. Phys. Anthrop. 52:43–54.CrossRefGoogle Scholar
  7. Armstrong, E., 1980b, A quantitative comparison of the hominoid thalamus: III. A motor substrate — the ventrolateral complex. Am. J. Phys. Anthrop. 52:405–419.CrossRefGoogle Scholar
  8. Armstrong, E., 1981, A quantitative comparison of the hominoid thalamus: IV. Posterior association nuclei — the pulvinar and lateral posterior nucleus. Am. J. Phys. Anthrop., 55:369–383.CrossRefGoogle Scholar
  9. Bauchot, R., 1963. L’architectonique comparée, qualitative et quantitative, du diencéphale des insectivores. Mammalia, 27: Suppl. 1, pp. 1-400.Google Scholar
  10. Bauchot, R., 1979, Indices encéphaliques et distances interspécifiques chez les insectivores et les primates. II. Diencéphale et thalamus. Mammalia, 43:407–426.CrossRefGoogle Scholar
  11. Blinkov, S.M., and Glezer, I.I., 1968. The Human Brain in Figures and Tables, Plenum Press, New York, p. 227.Google Scholar
  12. Blinkov, S., and Zvorykin, V.P., 1950. Dimensions of the auditory cortex and the medial geniculate body in man and monkeys. Referred to in, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., Basil Haigh, trans., Plenum Press, New York, 1968, pp. 225-226 and 410-412.Google Scholar
  13. Bok, S.T., 1959. Histonomy of the Cerebral Cortex, Van Nostrand-Rinehold, Princeton, N.J.Google Scholar
  14. Brady, J.V., 1960. Emotional behavior. In, Handbook of Physiology, Section I, J. Field, ed., Neurophysiology, Vol. III, American Physiological Society, Washington, D.C., pp. 1529–1552.Google Scholar
  15. Chalupa, L.M., 1977, A review of cat and monkey studies implicating the pulvinar in visual function. Behav. Biol., 20:149–167.CrossRefGoogle Scholar
  16. Chow, K.L., 1951, Numerical estimates of the auditory central nervous system of the rhesus monkey. J. Comp. Neurol., 95:159–175.CrossRefGoogle Scholar
  17. Chow, K.L., Blum, J.S., and Blum, K.A., 1950, Cell ratios in the thalamocortical visual system of Macaca mulatta. J. Comp. Neurol., 92:227–239.CrossRefGoogle Scholar
  18. Curtiss, S., 1977. Genie: A Psycholinguistic Study of a Modern Day “Wild Child,” Academic Press, New York.Google Scholar
  19. Elder, J.H., 1934, Auditory acuity of the chimpanzee. J. Comp. Psychol., 17:157–183.CrossRefGoogle Scholar
  20. Farrer, D.N., and Prim, M.M., 1965. A preliminary report on auditory frequency threshold comparison of humans and pre-adolescent chimpanzees. Aeromedical Research Laboratory Technical Report, Holloman AFB, New Mexico, pp. 65-66.Google Scholar
  21. Farrer, D.N., and Young, F.A., 1970. Chimpanzee color vision, acuity, and ocular components. In, The Chimpanzee, Vol. 2, G. Bourne, ed., Karger, Basel, pp. 16-25.Google Scholar
  22. Feremutsch, K., 1963, Thalamus. Primatologia, 2:1–226.Google Scholar
  23. Freud, S., 1930. Civilization and Its Discontents, Hogarth Press, London.Google Scholar
  24. Gould, J.C., and Gould, C.G., 1981, The instinct to learn. Science 81, 2:44–50.Google Scholar
  25. Grether, W.F., 1941, Spectral saturation curves for chimpanzees and man. J. Exp. Psychol., 28:419–427.CrossRefGoogle Scholar
  26. Grether, W.F., 1942, The magnitude of simultaneous color contrast and simultaneous brightness contrast for chimpanzee and man. J. Exp. Psychol., 30:69–83.CrossRefGoogle Scholar
  27. Harting, J.K., Hall, W.C., and Diamond, I.T., 1972, Evolution of the pulvinar. Brain Behav. Evol., 6:424–452.CrossRefGoogle Scholar
  28. Hassler, R., 1959. Anatomy of the thalamus. In, Introduction to Stereotaxis with an Atlas to the Human Brain. Grune and Stratton, New York, pp. 230–290.Google Scholar
  29. Haug, H., 1972, Stereological methods in the analysis of neuronal parameters in the central nervous system. J. Micros., 95:165–180.CrossRefGoogle Scholar
  30. Heiner, J.R., 1960, A reconstruction of the diencephalic nuclei of the chimpanzee. J. Comp. Neurol., 114:217–238.CrossRefGoogle Scholar
  31. Hirsh, R., Davis, R.E., and Holt, L., 1979, Fornix-thalamus fibers motivational states, and contextual retrieval. Exp. Neurol., 65:373–390.CrossRefGoogle Scholar
  32. Holloway, R.L., Jr., 1968, The evolution of the primate brain: some aspects of quantitative relations. Brain Res., 7:121–172.CrossRefGoogle Scholar
  33. Holloway, R.L., Jr., 1970. Neural parameters, hunting, and the evolution of the human brain. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 299–310.Google Scholar
  34. Holloway, R.L., Jr., 1975. The Role of Human Social Behavior in the Evolution of the Brain. 43rd James Arthur Lecture, 1973, American Museum of Natural History, New York.Google Scholar
  35. Holloway, R.L., Jr., 1979. Brain size allometry and reorganization: toward a synthesis. In, Development and Evolution of Brain Size, M.E. Hahn, C. Jensen and B.C. Dudek, eds., Academic Press, New York, pp. 61–88.Google Scholar
  36. Hopf, A., 1965, Volumetrische Untersuchungen zur vergleichenden Anatomie des Thalamus. J. f. Hirnforschung, 8:25–38.Google Scholar
  37. Hsu, F.L.K., 1979, The cultural problem of the cultural anthropologist. Am. Anthrop., 81:517–532.CrossRefGoogle Scholar
  38. Jerison, H.J., 1973. Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  39. Kanagasuntheram, J. and Wong, W.C., 1968, Nuclei of the diencephalon of Hylobatidae. J. Comp. Neurol., 134:265–286.CrossRefGoogle Scholar
  40. Kievit, J., and Kuypers, H.G.J.M., 1977, Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res., 29:299–322.CrossRefGoogle Scholar
  41. Krayniak, P.F., Siegel, A., Meibach, R.C., Fruchtman, D., and Scrimenti, M., 1979, Origin of the fornix system in the squirrel monkey. Brain Res., 160:401–411.CrossRefGoogle Scholar
  42. Kuhlenbeck, H., 1954. The Human Diencephalon, Karger, New York.Google Scholar
  43. Kurepina, M.M., 1938. Structure and phylogenetic development of the thalamus in primates. Arkh. Biol. Nasuk., 49:116. In, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., B. Haigh, trans., 1968, Plenum Press, New York.Google Scholar
  44. Le Gros Clark, W.E., 1941, The laminar organization and cell content of the lateral geniculate body in the monkey. J. Anat., 75:419–433.Google Scholar
  45. Le Gros Clark, W.E., 1959. The Antecedents of Man, Edinburgh University Press, Edinburgh.Google Scholar
  46. Lovejoy, C.O., 1981, The origin of man. Science, 21:341–350.CrossRefGoogle Scholar
  47. MacLean, P.D., 1952, Some psychiatric implications of physiological studies on the frontotemporal portion of the limbic system (visceral brain). Electroencep. Clin. Neurol., 4:407–418.CrossRefGoogle Scholar
  48. MacLean, P.D., 1973. A triune concept of the brain and behavior. In, The Hincks Memorial Lectures, T. Boag and D. Campbell, eds., University of Toronto Press, Toronto, pp. 6–66.Google Scholar
  49. Mayer, O., 1912. Mikrometrische Untersuchungen über Zelldichtigkeit der Grosshirnrinde bei den Affen. Jahrb. u. Psychol. Neurol., 17. Reprinted in, The Human Brain in Figures and Tables, S.T. Blinkov and I.I. Glezer, eds., B. Haigh, trans., 1968, Plenum Press, New York, p. 402.Google Scholar
  50. McDonnell, M.F., and Flynn, J.P., 1968, Attack elicited by Stimulation of the thalamus and adjacent structures of cats. Behav., 31:185–202.CrossRefGoogle Scholar
  51. McGuinness, C.M., and Krauthamer, G.M., 1980, The afferent connections to the centrum medianum of the cat as demonstrated by retrograde transport of horseradish peroxidase. Brain Res., 184:255–269.CrossRefGoogle Scholar
  52. McHenry, H., 1975, Fossils and the mosaic nature of human evolution. Science, 190:425–431.CrossRefGoogle Scholar
  53. Mesulam, M.-M., and Geschwind, N., 1978, On the possible role of neocortex and its limbic connections in the process of attention and schizophrenia: Clinical cases of inattention in man and experimental anatomy in monkey. J. Psychiat. Res., 14:249–259.CrossRefGoogle Scholar
  54. Mesulam, M.-M., Van Hoesen, G.W., Pandya, D.N., and Geschwind, N., 1977, Limbic and sensory connections of the inferior parietal lobule (Area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Res., 136:393–414.CrossRefGoogle Scholar
  55. Mikol, J., Brian, S., Derome, P., De Pommery, J., and Gallissot, M.C., 1977, Connections of latero-dorsal nucleus of the thalamus. II. Experimental study in Papio papio. Brain Res., 138:1–16.CrossRefGoogle Scholar
  56. Mirsky, A., Rosvold, H.E., and Pribram, K.H., 1957, Effects of cingulectomy on social behavior in monkeys. J. Neurophys., 20:588–601.Google Scholar
  57. Morison, R.S., and Dempsy, E.W., 1942, A study of thalamo-cortical relations. Am. J. Physiol, 135:281–292.Google Scholar
  58. Namba, M., 1958, Uber die feineren Strukturen des Medio-dorsalen Supranucleus und der Lamella Medialis des Thalamus beim Menschen. J. f. Hirnforsch., 4:1–42.Google Scholar
  59. Niimi, K., and Kuwahara, E., 1973, The dorsal thalamus of the cat and comparison with monkey and man. J. f. Hirnforsch., 14:303–325.Google Scholar
  60. Niimi, K., Katayama, K., Karaseki, T., and Morimoto, K., 1960, Studies on the derivation of the centremedian nucleus of Luys. Tokushima J. Exp. Med., 6:261–268.Google Scholar
  61. Ojemann, G.A., 1974. Speech and short-term verbal memory alterations evoked from stimulation in pulvinar. In, The Pulvinar-LP Complex, I.S. Cooper, M. Riklan, and P. Rakic, eds., Charles C Thomas, Springfield, pp. 173–184.Google Scholar
  62. Olszewski, J., 1952. The Thalamus of the Macaca Mulatta, Karger, New York.Google Scholar
  63. Papez, J.W., 1937, A proposed mechanism of emotion. Arch. Neurol. Psychiat., 38:725–744.Google Scholar
  64. Passingham, R.E., 1973, Changes in the size and organization of the brain in man and his ancestors. Brain Behav. Evol., 11:73–90.CrossRefGoogle Scholar
  65. Passingham, R.E., 1979. Specialization in the language areas. In, Neurobiology of Social Communication in Primates, H.O. Steklis and M.J. Raleigh, eds., Academic Press, New York, pp. 221–256.Google Scholar
  66. Phillips, C.G., and Porter, R., 1977. Corticospinal neurons: Their role in movement. In, Monographs of the Physiol. Soc., Vol. 34, Academic Press, New York.Google Scholar
  67. Radinsky, L.B., 1979. The Fossil Record of Primate Brain Evolution. 49th James Arthur Lecture on the Evolution of the Human Brain, American Museum of Natural History, New York.Google Scholar
  68. Rakic, P., 1974. Embryonic development of the pulvinar-LP complex in man. In, The Pulvinar-LP Complex, I.S. Cooper, M. Riklan, and P. Rakic, eds., Charles C Thomas, Springfield, pp. 3–30.Google Scholar
  69. Rakic, P., and Sidman, R.L., 1969, Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl.-Gesch., 129:53–82.CrossRefGoogle Scholar
  70. Reynolds, V., 1976. The Biology of Human Action, Freeman, San Franscisco.Google Scholar
  71. Riesen, A.H., 1970. Chimpanzee visual perception. In, The Chimpanzee, Vol. 2, G. Bourne, ed., Karger, Basel, pp. 1–15.Google Scholar
  72. Riss, W., Halpern, M., and Scalia, F., 1969, Anatomical aspects of the evolution of the limbic and olfactory systems and their potential significance for behavior. In, Experimental Approaches to the Study of Emotional Behavior, E. Toback, ed., Ann. N.Y. Acad. Sci., 159:1096-1111.Google Scholar
  73. Rockel, A.J., Nivens, R.W., and Powell, T.P.S., 1980, The basic uniformity in structure of the neocortex. Brain, 103:221–244.CrossRefGoogle Scholar
  74. Shariff, G.A., 1953, Cell counts in the primate cerebral cortex. J. Comp. Neurol., 98:381–400.CrossRefGoogle Scholar
  75. Singer, M., 1980, Signs of the self: an exploration in semiotic anthropology. Am. Anthrop., 82:485–507.CrossRefGoogle Scholar
  76. Spiegel, E.A., Wycis, H.I., Freed, H., Orchinik, C., 1951, The central mechanisms of the emotions. Am. J. Psychiat., 108:426–431.Google Scholar
  77. Stebbins, W.C., 1971. Hearing. In, Behavior of Nonhuman Primates, Vol. 3, A.M. Schrier and Stollnitz, eds., Academic Press, New York, pp. 159–192.Google Scholar
  78. Stephan, H., 1969, Quantitative investigations on visual structure in primate brains. Proc. 2nd Int. Congr. Primat., 3:34–42.Google Scholar
  79. Stephan, H., and Andy, O.J., 1964, Quantitative comparisons of brain structures from insectivores to primates. Am. Zool., 4:59–74.Google Scholar
  80. Stephan, H., and Andy, O.J., 1974. Comparative primate neuroanatomy of structures relating to aggressive behavior. In, Primate Aggression Territoriality and Xenophobia: A Comparative Perspective, R. Holloway, ed., Academic Press, New York, pp. 305–330.Google Scholar
  81. Stephan, H., Bauchot, R., and Andy, O.J., 1970. Data on size of the brain and of various brain parts in insectivores and primates. The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 289–298.Google Scholar
  82. Sullivan, P.R., Kuten, J., Atkinson, M.S., Angevine, J.B., and Yakovlev, P.I., 1958, Cell count in the lateral geniculate nucleus of man. Neurol., 8:566–567.Google Scholar
  83. Thompson, R., Gates, C.E., and Gross, S.A., 1979, Thalamic regions critical for retention of skilled movements in the rat. Physiol. Psychol., 7:7–21.Google Scholar
  84. Tower, D.B., 1954, Structural and functional organization of the mammalian cerebral cortex. The correlation of neuron density with brain size. Cortical density in the finwhale with a note on the cortical neurone density in the Indian elephant. J. Comp. Neurol., 101:19–53.CrossRefGoogle Scholar
  85. Tower, D.B., and Young, O.M., 1973, The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of mammalian species from mouse to whale. J. Neurochem., 20:269–278.CrossRefGoogle Scholar
  86. Tsubokawa, T., and Moriyasu, N., 1978, Motivational slow negative potential shift (CNV) related to thalamotomy. Appl. Neurophysiol., 41:202–208.Google Scholar
  87. Van Buren, J., and Borke, R., 1972. Variations and Connections of the Human Thalamus, Vol. I, II, Springer-Verlag, New York.Google Scholar
  88. Victor, M., Adams, R.D., and Collins, H.G., 1971. The Wernicke-Korsakoff Syndrome, E. A. Davis Co., Philadelphia.Google Scholar
  89. Vinagradova, O.S., 1975. Functional organization of the limbic system in the process of registration of information: Facts and hypotheses. In, The Hippocampus, II, R.L. Isaacson and K.H. Pribram, eds., Plenum Press, New York, pp. 3–69.CrossRefGoogle Scholar
  90. Vogt, O.H., Rosene, D.L., and Pandya, D.N., 1979, Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science, 204:205–207.CrossRefGoogle Scholar
  91. Vyshinskaya, G.A., 1961. Personal communication. In, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., B. Haigh, trans., Plenum Press, New York, p. 44.Google Scholar
  92. Walker, A.E., 1938. The Primate Thalamus, University of Chicago Press, Chicago.Google Scholar
  93. Wilson, W.P., 1975. Sociobiology: The New Synthesis, Belknap Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Este Armstrong
    • 1
  1. 1.Department of AnatomyLouisiana State University Medical CenterNew OrleansUSA

Personalised recommendations