Advertisement

Some Questions and Problems Related to Homology

  • C. B. G. Campbell

Abstract

Comparisons of human brains with those of nonhuman primates and other animals have played a large role in the making of inferences about human origins and evolution. Originally, brain size and gross morphology were the primary objects of comparison. Sir Wilfrid Le Gros Clark, along with some others, was instrumental in placing importance on similarities and differences in internal structure as revealed by descriptive and experimental histology. The concept of homology is central to the making of such comparisons between animals.

Keywords

Nonhuman Primate Middle Temporal Gyrus Superior Temporal Sulcus Middle Temporal Medial Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J.M. and Kaas, J.H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res., 31:85–105.CrossRefGoogle Scholar
  2. Allman, J.M., Kaas, J.H., and Lane, R.H., 1973, The middle temporal visual area (MT) in the bushbaby, Galago senegalensis. Brain Res., 57:197–202.CrossRefGoogle Scholar
  3. Campbell, C.B.G. and Hodos, W., 1970, The concept of homology and the evolution of the nervous system. Brain Behav. Evol., 3:353–367.CrossRefGoogle Scholar
  4. Economo, C. von and Horn, L., 1930, Ueber windungsrelief, Masse Rindenarchitektonik der Supratemporalflaeche, ihre individuellen und ihre Seitenunterscheide. Z. Ges. Neurol. Psychiat., 130:678–757.CrossRefGoogle Scholar
  5. Geschwind, N., 1965, Disconnexion syndromes in animals and man. Brain, 88:237–294.; 585-644.CrossRefGoogle Scholar
  6. Geschwind, N. and Levitsky, W., 1968, Human brain: Left-right asymmetries in temporal speech region. Science, 161:186–187.CrossRefGoogle Scholar
  7. Ghiselin, M.T., 1966, An application of the theory of definitions to systematic principles. Syst. Zool., 15:127–130.CrossRefGoogle Scholar
  8. Lankester, E.R., 1870, On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Ann. Mag. Natl. Hist., 6:34–43.Google Scholar
  9. LeMay, M. and Geschwind, N., 1975, Hemispheric differences in the brains of great apes. Brain Behav. Evol., 11:48–52.CrossRefGoogle Scholar
  10. Lund, R.D., 1978. Development and Plasticity of the Brain, Oxford University Press, New York.Google Scholar
  11. Nieuwenhuys, R. and Bodenheimer, T.S., 1966, The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J. Morph., 118:415–450.CrossRefGoogle Scholar
  12. Pandya, D.N. and Kuypers, H.G.J.M., 1969, Cortico-cortical connections in the rhesus monkey. Brain Res., 13:13–36.CrossRefGoogle Scholar
  13. Pfeifer, R.A., 1936. Pathologie der Hörstrahlung und der corticalen Hörsphäre. In, Handbuch der Neurologie, vol. 6., O. Bumke and O. Foerster, eds., J. Springer, Berlin, pp. 533–626.Google Scholar
  14. Simpson, G.G., 1961, Principles of Animal Taxonomy, Columbia, New York. Smith, H.M., 1967. Biological similarities and homologies. Syst. Zool., 16:101–102.Google Scholar
  15. Ungerleider, L.G. and Mishkin, ML., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatto: Location and topographic organization. J. Comp. Neurol., 188:347–366.CrossRefGoogle Scholar
  16. Winer, J.A. and Morest, D.K., 1979, What is a homology in the central nervous system? Golgi study of the medial geniculate body of the opossum and cat. Abstr. Soc. Neurosci., 5:147.Google Scholar
  17. Yeni-Komshian, G.H. and Benson, D.A., 1976, Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys. Science, 192:387–389.CrossRefGoogle Scholar
  18. Zeki, S.M., 1978a, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol., Lond., 277:273–290.Google Scholar
  19. Zeki, S.M., 1978b, Functional specialization in the visual cortex of the rhesus monkey. Nature, Lond., 274:423–428.CrossRefGoogle Scholar
  20. Zeki, S.M., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc. R. Soc, London, Ser. B., 207:239–248.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • C. B. G. Campbell
    • 1
  1. 1.Department of Medical Neurosciences, Division of NeuropsychiatryWalter Reed Army Institute of ResearchUSA

Personalised recommendations