Cloning Vectors Derived from Bacterial Plasmids

  • Michael Bittner
  • Daniel Vapnek
Part of the Basic Life Sciences book series


Bacterial plasmids are a diverse group of extrachromosomal genetic elements which are found in a wide variety of procaryotes. An examination of a large number of naturally occuring plasmids has led to the conclusion that they have evolved through a process which can be referred to as “modular evolution”. In this process, various functional units (such as those involved in conjugal transfer, antibiotic resistance and colicin production) have been combined with a replicating segment (replicon) to produce a composite plasmid. Further analysis has revealed that these functional units or modules are often transposable i.e., they can move from site to site in the absence of homologous recombination (40). Due to transposition, this process is dynamic, in that modules can be added or deleted to allow for the rapid evolution of more fit plasmids.


Cloning Vector Antibiotic Resistance Gene Bacterial Plasmid Unique Restriction Site Strain CR63 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alton, N. K. and D. Vapnek, Molecular cloning of restriction fragments and construction of a physical and genetic map of the E. coli plasmid R538–1, Plasmid 1: 388–404 (1978).CrossRefGoogle Scholar
  2. 2.
    An, G. and J. D. Friesen, Plasmid vehicles for direct cloning of Escherichi coli promoters, J. Bacteriol. 140: 400–407 (1979).Google Scholar
  3. 3.
    Andres, I, Slocombe, P. M., Cabello, F., Timmis, J. K., Lurz, R., Burkardt, H. J. and K. N. Timmis, Plasmid replication functions. II. Cloning analysis of the repA replication region of antibiotic resistance plasmid R6–5, Mol. Gen. Genet. 168: 125 (1979).CrossRefGoogle Scholar
  4. 4.
    Avni, H., Berg, P. E. and A. Markovitz, New mini-ColEl as a molecular cloning vehicle, J. Bacteriol. 129: 358–366 (1977).Google Scholar
  5. 5.
    Backman, K., Betlach, M., Boyer, H. W. and S. Yanofsky, Genetic and physical studies on the replication of ColEl-type plasmids, Cold Spring Harbor Symp. 43: 69–76 (1978).CrossRefGoogle Scholar
  6. 6.
    Backman, K., Hawley, D. and M. J. Ross, Use of phage immunity in molecular cloning experiments, Science 196: 182–183 (1977).CrossRefGoogle Scholar
  7. 7.
    Backman, K. and M. Ptashne, Maximising gene expression on a plasmid using recombination in vitro, Cell 13: 65–71 (1978).CrossRefGoogle Scholar
  8. 8.
    Beckwith, J. R., Lac: The genetic system, in: “The Lactose Operon”, J. R. Beckwith and D. Zipser, eds., Cold Spring Harbor Laboratory, New York (1970).Google Scholar
  9. 9.
    Bernard, H., Remaut, E., Hershfield, M. V., Das, H. K., Helinski, D. R., Yanofsky, C. and N. Franklin, Construction of plasmid cloning vehicles that promote gene expression from the bacteriophage lambda PL promoter, Gene 5: 59–76 (1979).CrossRefGoogle Scholar
  10. 10.
    Bittner, M. and D. Vapnek, Convenient cloning plasmids derived from the runaway replication plasmid pKN402, ms in preparation.Google Scholar
  11. 11.
    Blohm, D. and W. Goebel, Restriction map of the antibiotic resistance plasmid Rldrd-19 and its derivatives pKN102 (Rldrd19 B2) and Rldrd-16 for the enzymes BamHI, Hindlll, EcoRl and Sall, Mol. Gen. Genet. 167: 119–127 (1978).CrossRefGoogle Scholar
  12. 12.
    Bolivar, F., Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules, Gene 4: 121–136 (1978).CrossRefGoogle Scholar
  13. 13.
    Bolivar, F., Rodriguez, R. L., Betlach, M. C. and H. W. Boyer, Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatieves of the plasmid pMB9, Gene 2: 75–93 (1977).CrossRefGoogle Scholar
  14. 14.
    Bolivar, F., Rodriquez, R. L., Greene, P. J., Betlach, M. C. Heyneker, H. L. and H. W. Boyer, Construction and characterization of new cloning vehicles. II. A multipurpose cloning system, Gene 2: 95–113 (1977).CrossRefGoogle Scholar
  15. 15.
    Casadaban, M. J., Chou, J. and S. N. Cohen, In vitro gene fusions that join an enzymatically active -galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichi cola plasmid vectors for the detection and cloning of translational initiation signals, J. Bacteriol. 143:971–980 (1980).Google Scholar
  16. 16.
    Casadaban, M. J. and S. N. Cohen, Analysis of gene control signals by DNA fusion and cloning in Escherichia coli, J. Mol. Biol. 138: 179–207 (1980).CrossRefGoogle Scholar
  17. 17.
    Chang, A. C. Y. and S. Cohen, Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cyrptic miniplasmid, J. Bacteriol. 134: 1141–1156 (1978).Google Scholar
  18. 18.
    Charnay, P., Perricaudet, M., Galibert, F. and P. Tiollais, Bacteriophage lambda and plasmid vectors allowing fusion of cloned genes in each of the three translational phases, Nucleic Acids Res. 5: 4479–4494 (1978).CrossRefGoogle Scholar
  19. 19.
    Clewell, D. B., Nature of ColE1 plasmid replication in Escherichia coli in the presence of chloramphenicol, J. Bacteriol. 110: 667–676 (1972).Google Scholar
  20. 20.
    Clewell, D. B. and D. R. Helinski, Effect of growth conditions on the formation of the relaxation complex of supercoiled ColEl deoxyribonucleic acid and protein in Escherichia coli, J. Bacteriol. 110: 1135–1146 (1972).Google Scholar
  21. 21.
    Cohen, S. C. and A. C. Y. Chang, Revised interpretation of the origin of the pSC101 plasmid, J. Bacteriol. 132: 734–373 (1977).Google Scholar
  22. 22.
    Covey, C., Richardson, D. and J. Carbon, A method for the deletion of restriction sites in bacterial plasmid deoxribonucleic acid, Molec. Gen. Genet. 145: 155–158 (1976).CrossRefGoogle Scholar
  23. 23.
    Crombrugghe, B. de, Mudryj, M., Dilauro, R. and M. Gottesman, Specificity of the bacteriophage lambda N gene product (pN): Nut sequences are necessary and sufficient for antitermination by pN, Cell 18: 1145–1151 (1979).CrossRefGoogle Scholar
  24. 24.
    Davies, J. and D. I. Smith, Plasmid-determined resistance to antimicrobial agents, Ann. Rev. Microbiol. 32: 469–518 (1978).CrossRefGoogle Scholar
  25. 25.
    Ditta, G., Stanfield, S., Corbin, D. and D. R. Helinski, Broad host range DNA cloning system for gram-negative bacteria: construction of a bank of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 77: 7347–7351 (1980).CrossRefGoogle Scholar
  26. 26.
    Donoghue, D. J. and P. A. Sharp, Replication of colicin El plasmid DNA in vivo requires no plasmid-encoded proteins, J. Bacteriol. 133: 1287–1294 (1978).Google Scholar
  27. 27.
    Dowding, J., Mechanisms of genamicin resistance in Staphylococcus aureus, Antimicrob. Agents Chemother. 11: 47–50 (1977).Google Scholar
  28. 28.
    Enger-Valk, B. E., van Rotterdam, J. and P. H. Pouwels, The construction of new vehicles for the cloning of transcription termination signals, Nucleic Acids Res. 9: 1973–1989 (1981).CrossRefGoogle Scholar
  29. 29.
    Figurski, D. H. and D. R. Helinski, Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc. Natl. Acad. Sci. USA 76: 16481652 (1979).Google Scholar
  30. 30.
    Franklin, T. J., Resistance of Escherichia coli to tetracyclines. Change in permeability to tetracycline in Escherichia cold bearing transmissible R factors, Biochem. J. 105: 371–378 (1967).Google Scholar
  31. 31.
    Fraser, T. H. and B. J. Bruce, Chicken ovalbumin is synthesized and sereted by Escherichia coli, Proc. Natl. Acad. Sci. USA 75: 5936–5940 (1978).CrossRefGoogle Scholar
  32. 32.
    Hallewell, R. A. and Emtage, S., Plasmid vectors containing the tryptophan operon promoter suitable for efficient regulated expression of foreign genes, Gene 9: 27–47 (1980).CrossRefGoogle Scholar
  33. 33.
    Harwood, J. and D. H. Smith, Catabolite repression chloramphenicol acetyle transferase synthesis in E. coli K12, Biochem. Biophys. Res. Commun. 42: 57–62 (1971).CrossRefGoogle Scholar
  34. 34.
    Hershfield, V., Boyer, H. W., Chow, L. and D. R. Helinski, Characterization of a mini-ColE1 plasmid, J. Bacteriol. 126: 447453 (1976).Google Scholar
  35. 35.
    Hershfield, V., Boyer, H.W., Yanofsky, C. Lovett, M.A. and D. R. Helinski, Plasmid ColE1 as a molecular vehicle for cloning and amplification of DNA, Proc. Nat. Acad. Sci. USA 71: 3455–3459 (1974).CrossRefGoogle Scholar
  36. 36.
    Itoh, T. and J. Tomizawa, Formation of an RNA primer for initiation of replication of ColEl DNA by ribonuclease H, Proc. Natl. Acad. Sci. USA 77: 2450–2454 (1980).CrossRefGoogle Scholar
  37. 37.
    Kahn, M., Kolter, R., Thomas, C., Figurski, D., Meyer, R., Remaut, E. and D. R. Helinski, Plasmid cloning vehicles derived from plasmids ColE1, F, R6K and RK2, Methods in Enzymology 68: 268–280 (1979).CrossRefGoogle Scholar
  38. 38.
    Kahn, M. and D. R. Helinski, Construction of a novel plasmidphage hybrid: Use of the hybrid to demonstrate ColE1 DNA replication in the absence of a ColEl-specified protein, Proc. Natl. Acad. Sci. USA 75: 2200–2204 (1978).CrossRefGoogle Scholar
  39. 39.
    Kollek, R., Oertel, W. and Goebel, W., Isolation and characterization of the minimal fragment required for autonomous replication (“basic replicon”) of a copy mutant (pKN102) of the antibiotic resistance factor R1, Mol. Gen. Genet. 162: 5157 (1978).CrossRefGoogle Scholar
  40. 40.
    Kopecko, D. J., Brevet, J. and S. N. Cohen, Involvement of multiple translocating DNA segments and recombinational hot-spots in the structural evolution of bacterial plasmids, J. Mol. Biol. 108: 333–360 (1976).Google Scholar
  41. 41.
    Lai, C. J. and B. Weisblum, Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus, Proc. Natl. Acad. Sci. USA 68: 856–860 (1971).CrossRefGoogle Scholar
  42. 42.
    Levine, A. D. and W. D. Rupp, Small RNA product from the in vitro transcription of ColEl DNA, in: “Microbiology-1978” D. Schlessinger, ed., American Society of Microbiology, Washington, D.C. (1978).Google Scholar
  43. 43.
    Levine, A. D. and W. D. Rupp, Small RNA product from the in vitro transcription of ColEl DNA, in: “Microbiology-1978” D. Schlessinger, ed., American Society of Microbiology, Washington, D.C. (1978).Google Scholar
  44. 44.
    Meacock, P. A. and S. N. Cohen, Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes plasmid inheritance, Cell 20: 509–542 (1980).CrossRefGoogle Scholar
  45. 45.
    Messing, J., Crea, R. and P. H. Seeburg, A system for shotgun DNA sequencing, Nucleic Acids Res. 9: 309–321 (1981).CrossRefGoogle Scholar
  46. 46.
    Miki; T., Easton, A. M. and Rownd, R. H., Cloning of replication, incompatibility and stability functions of R plasmid NR1, J. Bacteriol. 141: 87–99 (1980).Google Scholar
  47. 47.
    Molin, S. and K. Nordstrom, Control of plasmid R1 replication: functions involved in replication, copy number control, incompatibility and switch off of replication, J. Bacteriol. 141: 111–120 (1980).Google Scholar
  48. 48.
    Molin, S., Stougaard, P., Uhlin, B. E., Gustafsson, P. and K. Nordstrom, Clustering of genes involved in replication, copy number control, incompatibility and switch-off of replication, J. Bacteriol. 141: 111–120 (1979).Google Scholar
  49. 49.
    Morse, D. E., Mosteller, R. D. and C. Yanofsky, Dynamics of synthesis, translation and degradation of trp operon messenger RNA in E. coli, Cold Spring Harbor Symp. Quant. Biol. 34: 725–740 (1969).Google Scholar
  50. 50.
    Muesing, M., Tamm, J., Shepard, H. M. and B. Polisky, A single base-pair alteration is responsible for the DNA overproduction phenotype of a plasmid copy-number mutant, Cell 24: 235–242 (1981).CrossRefGoogle Scholar
  51. 51.
    Rao, R. N. and S. G. Rogers, A thermoinducible X phage-ColE1 plasmid chimera for the overproduction of gene products from cloned DNA segments, Gene 3: 247–263 (1978).CrossRefGoogle Scholar
  52. 52.
    Richmond, M. H. and R. B. Sykes, The 8-lactamases of gram negative bacteria and their possible physiological role, in: “Advances in microbial physiology, vol. 9”, Academic Press Inc., London (1973).Google Scholar
  53. 53.
    Roberts, T. M., Kacich, R. and M. Ptashne, A general method for maximizing the expression of a cloned gene, Proc. Natl. Acad. Sci. USA 76: 760–764 (1979).CrossRefGoogle Scholar
  54. 54.
    Shaw, W. V., The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant E. coli, J. Biol. Chem., 242: 687693 (1967).Google Scholar
  55. 55.
    So, M., Gill, R. and S. Flakow, The generation of a ColEl-ApR cloning vehicle which allows detection of inserted DNA, Molec. Gen. Genet. 142: 239–249 (1975).CrossRefGoogle Scholar
  56. 56.
    Soberon, X., Covarrubias, L. and F. Bolivar, Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325, Gene 9: 287–305 (1980).CrossRefGoogle Scholar
  57. 57.
    Summers, A. 0., Schottel, J., Clark, D. and S. Silver, PlasmidBorne Hg(II) and organomercurial resistance, im, PlasmidBorne Hg(II) and organomercurial resistance, im: “Microbiology 1974”, D. Schlessinger, ed., Am. Soc. Microbiol., Washington, D.C. (1974).Google Scholar
  58. 58.
    Suzuki, I., Takahashi, N., Shirato, S., Kawabe, H. and S. Mitsuhashi, Adenylation of streptomycin by Staphylococcus aureus! a new streptomycin adenylyt-transferase, in: “Microbial Drug Resistance”, S. Mitsuhaski and H. Hashimoto, eds., University Park Press, Baltimore (1975).Google Scholar
  59. 59.
    Tacon, W., Carey, N. and S. Emtage, The construction and characterization of plasmid vectors suitable for the expression of all DNA phases under the control of the E. coli tryptophan promoter, Molec. Gen. Genet. 177: 427–438 (1980).Google Scholar
  60. 60.
    Tait, R. C., Rodriquez, R. L. and H. W. Boyer, Altered tetracycline resistance in pSC101 recombinant plasmids, Mol. Gen. Genet. 151: 327–331 (1977).CrossRefGoogle Scholar
  61. 61.
    Timmis, K. N., Cabello, F. and S. N. Cohen, Cloning and characterization of EcoRI and Hindlll restriction endonucleasegenerated fragments of antibiotic resistance plasmids R6–5 and R6, Mol. Gen. Genet. 162: 121–137 (1978).CrossRefGoogle Scholar
  62. 62.
    Tsukada, I., Morimasa, Y., Umezawa, M., Hori, M. and H. Umezawa, Stimulation of kanamycin phosphotransferase synthesis in Escherichia coli by 3’,5’-cyclic AMP, J. Antibiotic 25: 144–146 (1972).CrossRefGoogle Scholar
  63. 63.
    Uhlin, B. E., Molin, S., Gustafsson, P. and K. Nordstrom, Plasmids with temperature-dependent copy number for amplification of cloned genes and their products, Gene 6: 91–106 (1979).CrossRefGoogle Scholar
  64. 64.
    West, R. W., Neve, R. L. and R. L. Rodriquez, Construction and characterization of Escherichia coli promoter probe plasmid vectors. I. Cloning of promoter-containing DNA fragments, Gene 7: 271–288 (1979).CrossRefGoogle Scholar
  65. 65.
    Wise, E. M. and M. M. Abou-Donia, Sulfonamide resistance mechanisms in Escherichia coli: R plasmid can determine sulfonamide-resistant dihydropteroate synthases, Proc. Natl. Acad. Acad. Sci. USA 72: 2621–2625 (1975).CrossRefGoogle Scholar
  66. 66.
    Platt, T., Regulation of Gene Expression in the tryptophan operon of Escherichie coli in “The Operon”. J. Miller and W. S. Reznikoff ed. Cold Spring Harbor Laboratory, New York, 1978.Google Scholar
  67. 67.
    Yanofsky, C., Attenauation in the control of expression of bacterial operons. Nature 289: 751–758 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Michael Bittner
    • 1
  • Daniel Vapnek
    • 1
  1. 1.Department of Molecular and Population GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations