Advertisement

Genetics and Biochemistry of Tylosin Production: A Model for Genetic Engineering in Antibiotic-Producing Streptomyces

  • Richard H. Baltz
Part of the Basic Life Sciences book series

Abstract

Antibiotics are economically-important chemicals produced by a variety of species of prokaryotic and eukaryotic microorganisms. Species of the prokaryotic genus, Streptomyces, produce about 70 percent of all known antibiotics (19). Therefore, the Streptomyces present a practical model for genetic manipulation. Streptomyces are also fundamentally interesting for at least two reasons. First, they undergo a differentiation cycle of spore germination, mycelial growth, aerial mycelium formation and sporulation (17). In general, the relationships between the differentiation cycles and antibiotic production are only poorly understood. Second, the Streptomyces contain circular genomes (17,19) with guanine plus cytosin (G+C) contents of 69 to 73 percent (49). This G+C content approaches the genetic code upper limit (50), beyond which the amino acid content of proteins would have to deviate substantially from the bacterial norm. Since the latter is highly unlikely (47), the Streptomyces must have severely constrained codon usage patterns which should maximize the G+C content in the third position of codons. It is not known if there are additional constraints in noncoding sequences which, for instance, might affect promoter sequences.

Keywords

Protoplast Fusion Antibiotic Production Macrolide Antibiotic Streptomyces Species Formyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baltz, R. H., Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration, J. Gen. Microbiol., 107: 93–102 (1978).Google Scholar
  2. 2.
    Baltz, R. H., Genetic recombination by protoplast fusion in Streptomyces, Dev. Ind. Microbiol., 21: 43–54 (1980).Google Scholar
  3. 3.
    Baltz, R. H. and P. Matsushima, (1980). Applications of protoplast fusion, site directed mutagenesis and gene amplification to antibiotic yield improvement in Streptomyces, In: “Genetics and Physiology of Actinomycetes: Proceedings of the Fourth Conference of Project III, Genetics of Microorganisms, of the US/USSR Joint Working Group on the Production of Substances by Microbial Means”, pp. 124–148. S. G. Bradley, ed., American Society for Microbiology, Washington, D.C. (1980).Google Scholar
  4. 4.
    Baltz, R. H. and P. Matsushima, (1980). Applications of protoplast fusion, site directed mutagenesis and gene amplification to antibiotic yield improvement in Streptomyces, In: “Genetics and Physiology of Actinomycetes: Proceedings of the Fourth Conference of Project III, Genetics of Microorganisms, of the US/USSR Joint Working Group on the Production of Substances by Microbial Means”, pp. 124–148. S. G. Bradley, ed., American Society for Microbiology, Washington, D.C. (1980).Google Scholar
  5. 5.
    Baltz, R. H. and E. T. Seno. Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic, tylosin, Antimicrob. Agents Chemother., 20: 214–225 (1981).Google Scholar
  6. 6.
    Baltz, R. H., E. T. Seno, J. Stonesifer, P. Matsushima, and G. M. Wild, Genetics and biochemistry of tylosin production by Streptomyces fradiae, In: “Microbiology 1981”, D. Schlessinger, ed., Am. Soc. Microbiol., Washington, D.C. (1981) p. 371–375.Google Scholar
  7. 7.
    Baltz, R. H., E. T. Seno, J. Stonesifer, and G. M. Wild, Biosynthesis of the macrolide antibiotic, tylosin: A preferred pathway from tylactone to tylosin (manuscript in preparation).Google Scholar
  8. 8.
    Bibb, M. J., J. L. Schottel, and S. N. Cohen, A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces, Nature, 284: 526–531 (1980).CrossRefGoogle Scholar
  9. 9.
    Bibb, M. J., J. M. Ward and D. A. Hopwood, Transformation of plasmid DNA into Streptomyces at high frequency, Nature, 274: 398–400 (1978).CrossRefGoogle Scholar
  10. 10.
    Bibb, M. J., J. M. Ward and D. A. Hopwood, The development of a cloning system for Streptomyces, Dev. Indust. Microbiol., 21: 55–64 (1980).Google Scholar
  11. 11.
    Cox, K. L. and R. H. Baltz, In vivo restriction of actinophage propagation by a variety of Streptomyces hosts, Abstracts of the Second ASM Conference on Genetics and Molecular Biology of Industrial Microorganisms, Bloomington, Indiana (1980).Google Scholar
  12. 12.
    Elander, R. P., L. T. Chang, and R. W. Vaughan, Genetics of industrial microorganisms, Ann. Reports Ferm. Processes., 1: 129 (1979).Google Scholar
  13. 13.
    Fuchs, L. Y., L. Covarrubias, L. Escalante, S. Sanchez, and F. Bolivar, Characterization of a site-specific restriction endonuclease SphI from Streptomyces phaeochromogens, Gene, 10: 39–46 (1980).CrossRefGoogle Scholar
  14. 14.
    Feldman, L. I., I.K. Dill, C. E. Holmlund, H. A. Whaley, E. L. Patterson, and N. Bohonas, Microbial transformation of macrolide antibiotics, p. 54–57. In: “Antimicrobial Agents and Chemotherapy-1963”, J. C. Sylvester, ed., American Society for Microbiology, Washington, D.C. (1964).Google Scholar
  15. 15.
    Godfrey, 0., L. Ford and M. L. B. Huber, Interspecies matings of Streptomyces fradiae with Streptomyces bikiniensis mediated by conventional and protoplast fusion techniques, Can. J. Microbiol., 24: 994–997 (1978).Google Scholar
  16. 16.
    Godfrey, 0., L. Ford and M. L. B. Huber, Interspecies matings of Streptomyces fradiae with Streptomyces bikiniensis mediated by conventional and protoplast fusion techniques, Can. J. Microbiol., 24: 994–997 (1978).Google Scholar
  17. 17.
    Hopwood, D. A., Genetic analysis and genome structure in Streptomyces coelicolor, Bacteriol, Rev., 31: 373–403 (1967).Google Scholar
  18. 18.
    Hopwood, D. A., Extrachromosomally determined antibiotic production, Ann. Rev. Microbiol, 32: 373–392 (1978).CrossRefGoogle Scholar
  19. 19.
    Hopwood, D. A. and M. J. Merrick, Genetics of antibiotic production, Bacteriol. Rev. 41: 595–635 (1977).CrossRefGoogle Scholar
  20. 20.
    Hopwood, D. A., C. J. Thompson, T. Kieser, J. M. Ward and H. M. Wright, Progress in the development of plasmid cloning vectors for Streptomyces, In: “Microbiology-198I”, D. Schlessinger, ed., American Society for Microbiology, Washington, D.C. (1981). p 376–379.Google Scholar
  21. 21.
    Hopwood, D. A., H. M. Wright, M. J. Bibb, and S. N. Cohen, Genetic recombination through protoplast fusion in Streptomyces, Nature, 268: 171–174 (1977).CrossRefGoogle Scholar
  22. 22.
    Hopwood, D. A. and H. M. Wright, Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor, Mol. Gen. Genet., 162: 307–317 (1978).CrossRefGoogle Scholar
  23. 23.
    Hopwood, D. A. and H. M. Wright, Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor, J. Gen. Microbiol., 111: 137–143 (1979).Google Scholar
  24. 24.
    Jensen, A. L., M. A. Darken, J. S. Schultz, and A. J. Shay., Relomycin: flask and tank fermentation studies, p. 49–53. In: “antimicrobial Agents and Chemotherapy-1963”, J. C. Sylvester, ed., American Society for Microbiology, Washington, D.C. (1964).Google Scholar
  25. 25.
    Kleckner, N., J. Roth and D. Botstein, Genetic engineering in vivo using translocatable drug-resistance elements: new methods in bacterial genetics, J. Mol. Biol., 116: 125–159 (1977).CrossRefGoogle Scholar
  26. 26.
    Lomovskaya, N. D., K. F. Chater and N. M. Mkrtumian, Genetics molecular biology of Streptomyces bacteriophages, Microbiol. Rev., 44: 206–229 (1980).Google Scholar
  27. 27.
    Nakahama, K. and S. Igarasi, Microbial conversion of antibiotics. IV, Reduction of maridomycin, J. Antibiotics, 27: 605609 (1974).Google Scholar
  28. 28.
    Ochi, K., J. M. Hitchcock, and E. Katz, High frequency fusion of Streptomyces parvulus or Streptomyces antibioticus protoplasts induced by polyethylene glycol, J. Bacteriol., 139: 984992 (1979).Google Scholar
  29. 29.
    Okamoto, R., H. Nomura, M. Tsuchiza, H. Tsunekawa and T. Kukumoto. The activity of 4“-acylated tylosin derivatives against macrolide-resistant gram-positive bacteria, J. Antibiotics, 32: 542–544 (1979).CrossRefGoogle Scholar
  30. 30.
    Okamoto, R., M. Tsuchiza, H. Nomura, H. Iguchi, K. Kujoshima, S. Hori and T. Inui, Biological properties of new acyl derivatives of tylosin, J. Antibiotics, 33: 1309–1315 (1980).CrossRefGoogle Scholar
  31. 31.
    Omura, A., C. Kitao, J. Miyazawa, H. Imai, and H. Takeshima, Bioconversion and biosyntehsis of 16-membered macrolide antibiotic, tylosin, using enzyme inhibitor: cerulenin, J. Antibiotics, 31: 254–259 (1978).CrossRefGoogle Scholar
  32. 32.
    Omura, S., C. Kitao, and N. Sadakane, The microbial transformation of tylosin by the spiramycin-producing strain, Streptomyces ambofaciens KA-1028, J. Antibiotics, 33: 911–912 (1980).CrossRefGoogle Scholar
  33. 33.
    Omura, S. and A. Nakagawa, Chemical and biological studies on 16-membered macrolide antibiotics, J. Antibiotics, 28: 401–433 (1975).CrossRefGoogle Scholar
  34. 34.
    Omura, S., A. Nakagawa, H. Takeshima, J. Miyazawa, C. Kitao, F. Piriou, and G. Lukacs,A 13C nuclear magnetic resonance study of the biosynthesis of the 16-membered macrolide antibiotic tylosin, Tetrahedron Lett., 50: 4503–4506 (1975).CrossRefGoogle Scholar
  35. 35.
    amura, S., H. Takeshima, A. Nakagawa, J. Miyazawa, F. Piriou, and G. Lakacs, Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy, Biochemistry, 16: 2860–2866 (1977).CrossRefGoogle Scholar
  36. 36.
    Pape, H. and G. U. Brillinger, Metabolic products of microorganisms 113. Biosynthesis of thymidine diphospho mycarose in a cell-free system from Streptomyces rimosus, Arch., Microbiol., 88: 25–35 (1973).Google Scholar
  37. 37.
    Queener, S. W. and R. H. Baltz, Genetics of industrial microorganisms, Ann. Reports Ferment. Processes, 3: 5–45 (1979).Google Scholar
  38. 38.
    Roberts, R. J., Restriction and modification enzymes and their recognition sequences, Gene, 8: 329–343 (1980).CrossRefGoogle Scholar
  39. 39.
    Satoi, S., N. Muto, M. Hayoshi, T. Fujii, and M. Otani, Mycinamicins, new macrolide antibiotics. I Taxonomy, production, isolation, characterization and properties, J. Antibiotics, 33: 364–376 (1980).CrossRefGoogle Scholar
  40. 40.
    Schottel, J. L., M. J. Bibb and S. N. Cohen, Cloning and expression in Streptomyces lividans of antibiotic resistance genes derived from Escherichia coli, J. Bacteriol., 146: 360–368 (1981).Google Scholar
  41. 41.
    Schottel, J. L., M. J. Bibb and S. N. Cohen, Cloning and expression in Streptomyces lividans of antibiotic resistance genes derived from Escherichia coli, J. Bacteriol., 146: 360–368 (1981).Google Scholar
  42. 42.
    Seno, E. T., and R. H. Baltz, S-adenosyl-L-methionine:macrocin 0-methyltransferase activities in mutants of Streptomyces fradiae which produce different levels of tylosin, (manuscript in preparation).Google Scholar
  43. 43.
    Seno, E. T., R. L. Pieper, and F. M. Huber, Terminal stages in the biosynthesis of tylosin, Antimicrob. Agents Chemother., 11: 455–461 (1977).Google Scholar
  44. 44.
    Shimotsu, H., H. Takahashi, and H. Saito, A new site-specific endonuclease Stul from Streptomyces tubercidicus, Gene, 11: 219225 (1980).Google Scholar
  45. 45.
    Suarez, J. E. and K. F. Chater, Polyethylene glycol-assisted transfection of Streptomyces protoplasts, J. Bacteriol., 142: 814 (1980).Google Scholar
  46. 46.
    Suarez, J. E. and K. F. Chater, DNA cloning in Streptomyces: A bifunctional replicon comprising pBR322 inserted into a Streptomyces phage, Nature, 286: 527–529 (1980).CrossRefGoogle Scholar
  47. 47.
    Sueoka, N., Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein, Proc. Nat. Acad. Sci., 47: 1141–1149 (1961).CrossRefGoogle Scholar
  48. 48.
    Thompson, C. J., J. M. Ward and D. A. Hopwood, DNA cloning in Streptomyces: resistance genes from antibiotic-producing species, Nature, 286: 525–527 (1980).CrossRefGoogle Scholar
  49. 49.
    Tewfik, E. M. and S. G. Bradley, Characterization of deoxyribonucleic acid from Streptomyces and Nocardiae, J. Bacteriol., 94: 1994–2000 (1967).Google Scholar
  50. 50.
    Woese, C. R. and M. A. Bleyman, Genetic code limit organisms, do they exist ? J. Mol. Evol., 1: 223–229 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard H. Baltz
    • 1
  1. 1.Eli Lilly and CompanyIndianapolisUSA

Personalised recommendations