Advertisement

Chlorophyll-Binding Proteins: Strategies and Developments for DNA Cloning in Rhodopseudomonas Sphaeroides

  • Samuel Kaplan
  • Chester Fornari
  • Joanne Chory
  • Bill Yen
Part of the Basic Life Sciences book series

Abstract

The three bacterial representatives capable of anoxygenic photosynthesis are members of the family Rhodospirillaceae, Chromatiaceae and Chlorobiaceae (10). Although there are many physiological and anatomical distinctions characterizing each of the families, a major distinction is that the former two families have both their light-harvesting (LH) and reaction-center (RC) activities within the same membrane system (9), whereas members of the Chlorobiaceae have structurally separated these activities (3). Many representatives of the Rhodospirillaceae in addition to growing photoheterotrophically are capable of chemotrophic growth. On the other hand, the Chromatiaceae and Chlorobiaceae are, by and large photoautotrophs (9). Generally, these organisms require a simple salts medium supplemented with a few common B-vitamins. Finally, the purple bacteria, Rhodospirillaceae and Chromatiaceae contain either bacteriochlorophylls (Bchl) a or b (11) (some Bchla containing species have 5% Bchlb:6), while members of the Chlorobiaceae contain in addition to Bchla, Bchl’s c, d or e (7).

Keywords

Photosynthetic Bacterium Purple Bacterium Photosynthetic Membrane High Aeration RHODOPSEUDOMONAS SPHAEROIDES 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, L. K. and Kaplan, S. “The Non-detergent Solubilization and Isolation of Intracytoplasmic Membrane Polypeptides From Rhodopseudomonas sphaeroides”. J. Biol. Chem. Vol. 256: 5901–5908 (1981).Google Scholar
  2. 2.
    Cohen, L. K. and Kaplan, S. “Characterization of the Three Major Intracytoplasmic Membrane Polypeptides From Rhodopseudomonas sphaeroides”. J. Biol. Chem. Vol. 256: 5909–5915 (1981).Google Scholar
  3. 3.
    Cohen-Bazire, G., Pfennig, N. and Kunisawa, R. “The Fine Structure of Green Bacteria”. J. Cell. Biol. 22: 207–225 (1964).CrossRefGoogle Scholar
  4. 4.
    Fraker, P. J. and Kaplan, S. “Isolation and Characterization of a Bacteriochlorophyll-containing Protein From Rhodopseudomonas sphaeroides”. J. Biol. Chem. 247: 2732–2737 (1972).Google Scholar
  5. 5.
    Fuller, R. C. “Photosynthetic Carbon Metabolism in the Green and Purple Bacteria”. In “The Photosynthetic Bacteria” (R. K. Clayton and W. R. Sistrom, eds.), pp 691–705. Plenum Press, New York (1978).Google Scholar
  6. 6.
    Gloe, A. and Pfennig, N. “Das Vorkommen von Phytol und Geranylgeraniol in den Bacteriochlorophyllen roter und gruner Schwefelbakterien”. Arch. Mikrobiol. 96: 93–101 (1974).Google Scholar
  7. 7.
    Gloe, A., Pfennig, N., Brockman, H. Jr., and Trowitzsch, W. “A New Bacteriochlorophyll from Brown-colored Chlorobiaceae.” Arch. Microbiol. 102: 103–109 (1975).CrossRefGoogle Scholar
  8. 8.
    Kaplan, S., “Control and Kinetics of Photosynthetic Membrane Development”. In “The Photosynthetic Bacteria” (R. K. Clayton and W. R. Sistrom, eds,), pp 809–839. Plenum Press, New York (1978).Google Scholar
  9. 9.
    Oelze, J. and Drews, G. “Membranes of Photosynthetic Bacteria”. Biochim Biophys. Acta 265: 209–239 (1972).Google Scholar
  10. 10.
    Pfennig, N. “Phototrophic Green and Purple Bacteria: A Comparative Systematic Survey” Annual Review of Microbiology 31: 275–290 (1977).CrossRefGoogle Scholar
  11. 11.
    Pfennig, N. and Truper, H. G. “The Phototrophic Bacteria” In “Bergey’s Manual of Determinative Bacteriology.” 8ed., (R. E. Buchanan and N. E. Gibbons, eds.), pp 24–64. Williams and Wilkins Company, Baltimore (1974).Google Scholar
  12. 12.
    Sauer, K. “Primary Events and the Trapping of Energy” In “Bioenergetics of Photosynthesis” (Govindjee, ed.), pp 115–181. Academic Press, New York (1975).Google Scholar
  13. 13.
    Sauer, K. and Austin, L. A. “Bacteriochlorophyll-Protein Complexes From The Light-Harvesting Antenna of Photosynthetic Bacteria” Biochemistry 17: 2011–2019 (1978).CrossRefGoogle Scholar
  14. 14.
    Smith, L. and Pinder, P. B. “Oxygen-Linked Electron Transport and Energy Conservation”. In “The Photosynthetic Bacteria” (R. K. Clayton and W. R. Sistrom, eds.), pp 641–654. Plenum Press, New York (1978).Google Scholar
  15. 15.
    Thornber, J. P., Trosper, T. L. and Strouse, C. E. “Bacteriochlorophyll in Vivo: Relationship of Spectral Forms to Specific Membrane Components” In “The Photosynthetic Bacteria” (R. K. Clayton and W. R. Sistrom, eds.), pp. 133–160. Plenum Press, New York (1978).Google Scholar
  16. 16.
    Uffen, R. L. “Fermentative Metabolism and Growth of Photosynthetic Bacteria” In “The Photosynthetic Bacteria” (R. K. Clayton, and W. R. Sistrom, eds.) pp 857–872. Plenum Press, New York. (1978).Google Scholar
  17. 17.
    Yen, H.-C., and Marrs, B. “Growth of Rhodopseudomonas capsulata Under Anaerobic Dark Conditions with Dimethyl Sulfoxide” Arch. Biochem. Biophys. 181: 411–418 (1977).CrossRefGoogle Scholar
  18. 18.
    Yock, D. C. “Nitrogen Fixation and Hydrogen Metabolism by Photosynthetic Bacteria” In “The Photosynthetic Bacteria” (R. K. Clayton and W. R. Sistrom, eds.), pp 657–676. Plenum Press, New York (1978).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Samuel Kaplan
    • 1
  • Chester Fornari
    • 1
  • Joanne Chory
    • 1
  • Bill Yen
    • 2
  1. 1.Department of MicrobiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of MicrobiologyAmoco Research CenterNapervilleUSA

Personalised recommendations