Beginning Genetics with Methanogens

  • John N. Reeve
  • Nancy J. Trun
  • Paul T. Hamilton
Part of the Basic Life Sciences book series


There have been two meetings*, convened during the past year, specifically to determine how microbial genetics could be productively applied to obligately anaerobic microorganisms and to methanogenic species in particular. One of us (JNR) attended both of these meetings. The following account of the status of current knowledge of the molecular biology of methanogens and suggestions for genetic approaches to be used in their study are, in part, derived from the very open and constructive discussions held at these two meetings.


Ribosomal Protein Methane Production Methanogenic Bacterium Muramic Acid Methanobacterium Thermoautotrophicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backman, K. and M. Ptashne. Maximizing gene expression on a plasmid using recombination in vitro cell. 13: 65–71 (1978).Google Scholar
  2. 2.
    Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. Methanogens: reevaluation of a unique biological group. Microb. Rev. 43: 260–296 (1979).Google Scholar
  3. 3.
    Balch, W.E., L.J. Magrum, G.E. Fox, R.S. Wolfe, and C.R. Woese. An ancient divergence among the bacteria. J. Mol. Evol. 9: 305–311 (1977).CrossRefGoogle Scholar
  4. 4.
    Balch, W.E. and Wolfe, R.S. Specificity and biological distribution of coenzyme M (2-Mercaptoethanesulfonic acid). J. Bact. 137: 256–263 (1979).Google Scholar
  5. 5.
    Becker, A. and M. Gold, Isolation of the bacteriophage lambda A gene protein. Proc. Natl. Acad. Sci. U.S.A. 72: 581–585 (1975).CrossRefGoogle Scholar
  6. 6.
    Best, A.N. Composition and characterization of tRNA from Methanococcus vannielii. J. Bact. 133: 240–250 (1978).Google Scholar
  7. 7.
    Clark, L. and J. Carbon. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome. Proc. Natl. Acad. Sci. U.S.A. 72: 4361–4366 (1975). (1975).Google Scholar
  8. 8.
    Douglas, C., F. Achatz, and A. Böck. Electrophoretic characterizatin of ribosomal proteins from methanogenic bacteria. Zbl. Bakt. I. Abt. Orig. 11, 1–11 (1980).Google Scholar
  9. 9.
    Filer, D. and A.V. Furano. Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes. J. Biol. Chem. 255: 728–734 (1980).Google Scholar
  10. 10.
    Gupta, R. and C.R. Woese. Unusual modification patterns in the transfer ribonucleic acids of Archaebacteria. Current Microb. 4: 245–249 (1980).CrossRefGoogle Scholar
  11. 11.
    Hilpert, H., J. Winter, W.P. Hammes, and O. Kandler. The sensitivity of Archaebacteria to antibiotics. Zbl. Bakt. I. Abt. Orig. C2. In press. (1981).Google Scholar
  12. 12.
    Hohn, B. and J. Collins. A small cosmid for efficient cloning of large DNA fragments. Gene 11: 291–298 (1980).CrossRefGoogle Scholar
  13. 13.
    Jones, J.E., B. Bauers, and T.C. Stadtman, Methanococcus vannielii: Ultrastructure and sensitivity to detergents and antibiotics. J. Bact. 130: 1357–1363 (1977).Google Scholar
  14. 14.
    Jones, J.B. and T.C. Stadtman. Methanococcus vannielii: Culture and effcts of selenium and tungsten on growth. J. Bact. 130: 1404–1406 (1977).Google Scholar
  15. 15.
    Karn, J., S. Brenner, L. Barnett, and G. Cesareni. Novel bacteriophage cloning vector. Proc. Natl. Acad. Sci. U.S.A. 77: 5172–5176 (1980).CrossRefGoogle Scholar
  16. 16.
    Kenealy, W. and J.G. Zeikus. Influence of corrinoid antagonists on methanogen metabolism. J. Bact. 146: 133–140 (1981).Google Scholar
  17. 17.
    Kessel, M. and F. Klink. Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature (Lond) 287: 250–251 (1980).CrossRefGoogle Scholar
  18. 18.
    Matheson, A.T., M. Yaguchi, W.E. Balch, and R.S. Wolfe. Sequence nomologies in the N-terminal region of the ribosomal ‘A’ proteins from Methanobacterium thermoautotrophicum and Halobacterium cutirubrum. Biochim. Biophys. Acta. 626: 162–169 (1980).Google Scholar
  19. 19.
    Mitchell, R.M., L.A. Loeblich, L.C. Klotz, and A.R. Loeblich III. DNA organization of Methanobacterium thermoautotrophicum Science 204: 1082–1084 (1979).Google Scholar
  20. 20.
    Pecher, T. and A. Böck. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. F.E.M.S. Microbiol. Lett. 10: 295–297 (1981).CrossRefGoogle Scholar
  21. 21.
    Prévot, A.R. Recherches récentes sur les bactéries méthanogènes. Bull d’Institut Pasteur 78: 217–265 (1980).Google Scholar
  22. 22.
    Reeve, J.N. Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature (Lond) 276: 728–729 (1978).CrossRefGoogle Scholar
  23. 23.
    Reeve, J.N. Ue of minicells for bacteriophage-directed polypeptide synthesis. Meth. Enzymol. 68: 493–503 (1979).CrossRefGoogle Scholar
  24. 24.
    Schmid, G. and A. Böck. Immunological comparison of ribosomal proteins from Archaebacteria. J. Bact., 147: 282–288 (1981).Google Scholar
  25. 25.
    Steitz, J.A. Methanogenic bacteria. Nature 273: 10 (1978).CrossRefGoogle Scholar
  26. 26.
    Sternberg, N., D. Tiemeier, and L. Enquist. In vitro packaging of a Dam vector containing EcoRI DNA fragments of Escherichia coli and phage Pi. Gene 1: 255–280 (1977).CrossRefGoogle Scholar
  27. 27.
    Stetter, K.O., J. Winter, and R. Hartlieb. DNA-dependent RNA polymerase of the Archaebacterium Methanobacterium thermoautotrophicum. Zbl. Bakt. Hyg., I. Abt. Orig. 11: 201–214 (1980). (1980).Google Scholar
  28. 28.
    Woese, C.R., L.J. Magrum, and G.E. Fox. Archaebacteria. J. mol. Evol. 11: 245–252 (1978).CrossRefGoogle Scholar
  29. 29.
    Wolfe, R.S. Methanogens: a surprising microbial group. Antonie von Leenwenhoek 45: 353–364 (1979).CrossRefGoogle Scholar
  30. 30.
    Zeikus, J.G. The biology of methanogenic bacteria. Bact. Rev. 41: 514–541 (1977).Google Scholar
  31. 31.
    Zillig, W. and K.O. Stetter. Distinction between the transcription systems of Archaebacteria and Eubaceria in: “Genetics and Evolution of RNA polymerase, tRNA and ribosomes”. S. Osawa, H. Ozeki, H. Uchida, and T. Yura, editors, University of Tokyo Press, Tokyo, Japan (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • John N. Reeve
    • 1
  • Nancy J. Trun
    • 1
  • Paul T. Hamilton
    • 1
  1. 1.Department of MicrobiologyOhio State UniversityColumbusUSA

Personalised recommendations