Genetic and Molecular Studies of the Regulation of Atypical Citrate Utilization and Variable Vi Antigen Expression in Enteric Bacteria

  • L. S. Baron
  • D. J. Kopecko
  • S. M. McCowen
  • N. J. Snellings
  • E. M. Johnson
  • W. C. Reid
  • C. A. Life
Part of the Basic Life Sciences book series


Genetic and biochemical studies of the metabolic and virulence properties of enterobacteria have been conducted, both for basic scientific and industrial reasons, for more than 40 years. Despite this long time span, only limited genetic characterization of enteric organisms other than Escherichia coli K-12 has been accomplished. Though several reasons can be offered for this lack of information, a major problem often encountered is the difficulty in genetically manipulating these other enteric organisms, e.g., Salmonella typhimurium, Salmonella typhi, Citrobacter freundii, wild-type E. coli, or Shigella species. In addition to facing DNA restriction barriers in many of these organisms, Hfr strains can not be easily constructed by classical procedures. Nevertheless, about 20 years ago my colleagues and I began intergeneric genetic transfer experiments with different enterobacteria to characterize their genetic constitution (2.3,8,13). Initially, classical genetic methods were used (i.e., F, F′, and Hfr strains), but these techniques presented many problems and resultant events usually occurred at a low frequency. Despite the difficulties, these studies led to the initial descriptions of conjugative plasmids coding for lactose and sucrose utilization in Salmonella (7,18,26,28) and involved the first mapping of chromosomally located antigenic determinants of Salmonella typhi, the causative agent of typhoid fever (11,13,14).


Conjugal Transfer Colony Type Citrate Utilization Enteric Organism Insertion Sequence Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmann, B.J. and K.B. Low (1980) Linkage map of Escherichia coli K12, Edition 6, Microbiol. Rev., 44: 1–56.Google Scholar
  2. 2.
    Baron, L.S., W.F. Carey, and W.M. Spilman (1959) Genetic recombination between Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci., U.S.A., 45: 976–984.CrossRefGoogle Scholar
  3. 3.
    Baron, L.S., P. Gemski, Jr., E.M. Johnson, and J.A. Wohlhieter. (1969) Intergeneric bacterial matings. Bacteriol. Rev., 32: 362–369.Google Scholar
  4. 4.
    Baron, L.S., D.J. Kopecko, W.C. Reid, and S.M. McCowen (1981) Genetic, molecular, and biochemical characterization of plasmidmediated atypical utilization of citrate byEscherichia coli In: Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids, S. Levy, E. Koenig, and R. Clowes (Eds.), Plenum Press, N.Y. (in press).Google Scholar
  5. 5.
    Cox, G.B., F. Gibson, R.K.J. Luke, N.A. Newton, I.G. O’Brien. and H. Rosenberg (1970) Mutations affecting iron transport in Escherichia coli. J. Bacteriol., 104: 219–226.Google Scholar
  6. 6.
    Faelen, M., A. Toussaint, M. Van Montagu, S. Van den Elsacker, G. Engler, and J. Schell. In vivo genetic engineering: the Mu-mediated transposition If chromosomal DNA segments onto transmissible plasmids. pp. 21–530. In: DNA Insertion Elements Plasmids, and Episomes, A Bukhari, J. Shapiro, and S. Adhya (Eds.), Cold Spring Harbor, N.Y.Google Scholar
  7. 7.
    Falkow, S., and L.S. Baron (1962) Episomic element in a strain of Salmonella typhosa. J. Bacteriol., 84: 581–589.Google Scholar
  8. 8.
    Falkow, S., R. Rownd, and L.S. Baron (1962) Genetic homology between Escherichia coli K12 and Salmonella. J. Bacteriol., 84: 1303–1312.Google Scholar
  9. 9.
    Farmer, J.J., F.W. Hickman, D.J. Brenner, M. Schreiber, and D.G. Rickenbach (1977) Unusual Enterobacteriaceae: “Proteus rettgeri” that “Change” into Providencia stuartii. J. Clin. Microbiol., 6: 373–378.Google Scholar
  10. 10.
    Ishiguro, N., C. Oka, and G. Sato (1978) Isolation of citrate-positive variants of Escherichia coli from domestic pigeons, pigs, cattle, and horses. Appl. Environ. Microbiol., 36: 217–222.Google Scholar
  11. 11.
    Johnson, E.M. and L.S. Baron (1969) Genetic transfer of the Vi antigen from Salmonella tyohosa to Escherichia coli. J. Bacteriol., 99: 358–359.Google Scholar
  12. 12.
    Johnson, E.M., W.G. Craig, Jr., J.A. Wohlhieter, J.R. Lazere, R.M. Synenki, and L.S. Baron (1973) Conservation of Salmonella typhimurium desoxyribonucleic acid in partially diploid hybrids of Escherichia coli. J. Bacteriol., 115: 629–634.Google Scholar
  13. 13.
    Johnson, E.M., B. Krauskopf, and L.S. Baron (1965) Genetic mapping of Vi and somatic antigen determinants in Salmonella J. Bacteriol., 90: 302–308.Google Scholar
  14. 14.
    Johnson, E.M., B. Krauskopf, and L.S. Baron (1966) Genetic Analysis of the ViA-his chromosomal region in Salmonella. J. Bacteriol., 92: 1457–1463.Google Scholar
  15. 15.
    Johnson, E.M., B.P. Placek, N.J. Snellings, and L.S. Baron (1975) Conservation of Salmonella typhimurium desoxyribonucleic acid, by chromosomal insertion in a partially diploid Escherichia coli hybrid. J. Bacteriol., 123: 1–6.Google Scholar
  16. 16.
    Kopecko, D.J., J. Vickroy, E.M. Johnson, J.A. Wohlhieter, and L.S. Baron (1980) Molecular and genetic analyses of plasmids responsible for lactose catabolism in Salmonella isolated from diseased humans. pp. 59–64. In Antibiotic resistance: transposition and other mechanisms, S. Mitsuhashi, L. Rosival, V. Krcméry (eds.) Springer-Verlag, N.Y.Google Scholar
  17. 17.
    Layne, P., A.S.L. Hu, A. Balows, and B.R. Davis (1971) Extra-chromosomal nature of hydrogen sulfide production in Escherichia coli. J. Bacteriol., 106: 1029–1030.Google Scholar
  18. 18.
    LeMinor, L., C. Coynault, R. Rhode, B. Rowe, and S. Aleksic (1973) Localisation plasmidique du determinant genetique du charactere atypique “saccharose +” des Salmonella. Ann. Microbiol. (Paris) 124B: 295–306.Google Scholar
  19. 19.
    Macrina, F.L., D.J. Kopecko, K.R. Jones, D.J. Ayers, and S.M. McCowen (1978) A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid, 1: 447–520.CrossRefGoogle Scholar
  20. 20.
    Sachan, D.S. and J.R. Stern (1971) Studies of citrate transport in Aerobacter aerogenes: binding of citrate by a membrane bound oxaloacetate decarboxylase. Biochem. Biophys. Res. Commun., 45: 402–408.CrossRefGoogle Scholar
  21. 21.
    Sanderson, K.E., and P.E. Hartman (1978) Linkage map of Salmonella typhimurium, Edition V. Microbiol. Rev., 42: 471–519.Google Scholar
  22. 22.
    Silverman, M., J. Zieg, M. Hilmen, and M. Simon (1979) Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc. Natl. Acad. Sci., U.S.A., 76: 391–395.CrossRefGoogle Scholar
  23. 23.
    Smith, H.W., Z. Parsell, and P. Green (1978) Thermosensitive H1 plasmids determining citrate utilization. J. Gen. Microbiol. 109: 305–311.Google Scholar
  24. 24.
    Snellings, N.J., E.M. Johnson, and L.S. Baron (1977) Genetic basis of Vi antigen expression in Salmonella paratyphi C. J. Bacteriol., 131: 57–62.Google Scholar
  25. 25.
    Snellings, N.J., E.M. Johnson, D.J. Kopecko, H.H. Collins, and L.S. Baron (1981) Genetic regulation of variable Vi antigen expression in a strain of Citrobacter freundii, J. Bacteriol., 145: 1010–1017.Google Scholar
  26. 26.
    Synenki, R.M., J.A. Wohlhieter, E.M. Johnson, J.R. Lazere, and L.S. Baron (1973) Isolation and characterization of circular deoxyribonucleic acid obtained from lactose-fermenting Salmonella strains. J. Bacterial., 116: 1185–1190.Google Scholar
  27. 27.
    Washington, J.A. and J.A. Timm (1976) Unclassified, citrate-positive member of the family Enterobacteriaceae resembling Escherichia coli. J. Clin. Microbial., 4: 165–167.Google Scholar
  28. 28.
    Wohlhieter, J.A., J.R. Lazere, N.J.Snellings, E.M. Johnson, R.M. Synenki, and L.S. Baron (1975) Characterization of transmissible genetic elements from sucrose-fermenting Salmonella strains. J. Bacteriol. 122: 401–406.Google Scholar
  29. 29.
    Zieg, J., M. Silverman, M. Hilmen, and M. Simon (1978) The mechanism of phase variation, In: The Operon, J. H. Miller and W.S. Reznikoff (Eds.) Cold Spring Harbor, N.Y.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • L. S. Baron
    • 1
  • D. J. Kopecko
    • 1
  • S. M. McCowen
    • 2
  • N. J. Snellings
    • 1
  • E. M. Johnson
    • 1
  • W. C. Reid
    • 1
  • C. A. Life
    • 1
  1. 1.Department of Bacterial ImmunologyWalter Reed Army Institute of ResearchUSA
  2. 2.Department of BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations