Transformation of Neurospora Crassa Utilizing Recombinant Plasmid DNA

  • Mary E. Case
Part of the Basic Life Sciences book series


In comparison to yeast (15), the development of recombinant DNA technology for filamentous fungi is in its early stages. Recombinant DNA technology is dependent on two different though related matters: an efficient transformation system for the organism and an appropriate vector. In addition, transformation in any organism involves two processes: a system which permits the uptake of DNA into the cell and the subsequent integration of the DNA into a chromosome or its maintenance as a self-replicating entity in the recipient strain. An efficient transformation system for Neurospora crassa has been developed utilizing a cloned gene from Neurospora (4,27). The development of this procedure will be described here with the hope that some of the methods will be applicable to the development of such systems for other filamentous fungi.


Transformation Frequency Neurospora Crassa Quinic Acid Recipient Strain Efficient Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmann, B.J., and D.M. Bonner. Protoplasts from Neutrospora crassa. J. Bact., 78: 550–556 (1959).Google Scholar
  2. 2.
    Barry, E.G. Meiotic chromosome behavior of an insertional translocation in Neurospora. Genetics, 71: 53–62 (1972).Google Scholar
  3. 3.
    Beggs, J.D. Transformation of yeast by a replicating hybrid plasmid. Nature, 275: 104–108 (1978).CrossRefGoogle Scholar
  4. 4.
    Case, M.E., Schweizer, M., Kushner, S.R., and N. H. Giles. Efficient transformation of Neurospora crassa utilizing hybrid plasmid DNA. Proc. Nat. Acad. Sci. USA, 76: 5259–5263 (1979).CrossRefGoogle Scholar
  5. 5.
    Clark, L. and J. Carbon. Isolation of yeast centromere and construction of functional small circular chromosomes. Nature, 287: 504–509 (1980).CrossRefGoogle Scholar
  6. 6.
    Cohen, J.D., Eccleshall, T.R., Needleman, R.B., Federoff, H., Buchferer, B.A., and J. Marmur. Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase. Proc. Nat. Acad. Sci., USA, 77: 1078–1082 (1980).CrossRefGoogle Scholar
  7. 7.
    Collins, J. and B. Hohn. Cosmids: A type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lamda heads. Proc. Nat. Acad. Sci., USA, 74: 4242–4246 (1978).CrossRefGoogle Scholar
  8. 8.
    Collins, R.A., Stohl, L.L., Cole, M.D., and A.M. Lambowitz. Characterization of a novel plasmid DNA found in mitochondria of Neurospora crassa. Cell (In Press).Google Scholar
  9. 9.
    Free, S.J., Rice, P.W. and R.L. Metzenberg. Arrangement of the genes coding for ribosomal ribonucleic acids in Neurospora crassa. J. Bact., 137: 1219–1226 (1979).Google Scholar
  10. 10.
    Gaertner, F.H. A cluster gene evidence for one gene, one polypeptide, five enzymes. Biochem. Biophys. Res. Commun., 75: 259–264 (1977).Google Scholar
  11. 11.
    Giles, N.H., Alton, N.K., Case, M.E., Hautala, J.A., Jacobson, J.W., Kushner, S.R., Patel, V.B., Reinert, W.R., Stroman, P., and D. Vapnek. The Organization of the qa gene cluster in Neurospora crassa and its expression in Escherichia coli. Stadler Symp., 10: 49–63 (1978).Google Scholar
  12. 12.
    Gregg, G.W. Competitive suppression and the detection of mutations in microbial populations. Australian J. Biol. Sci., 11: 69–84 (1958).Google Scholar
  13. 13.
    Hicks, J.B., Hinnen, A., and G. R. Fink. Properties of yeast transformation. Cold Spring Harbor Symposium, Vol. XLIII, 1305–1313 (1978).Google Scholar
  14. 14.
    Hinnen, A., Farabaugh, P., Ilgen, C. and G. R. Fink. Isolation of a yeast gene (His4) by transformation of yeast. Eukaryotic Gene Regulation, ed. by Richard Axel, Tom Manitis and C. Fred Fox, ICN-UCLA Symp. on Molecular and Cellular Biology, Vol. XIV, 43–50, Academic Press (1978).Google Scholar
  15. 15.
    Hinnen, A., Hicks, J.B., and G.R. Fink. Transformation of yeast. Proc. Nat. Acad. Sci., USA, 75: 1929–1933 (1978).CrossRefGoogle Scholar
  16. 16.
    Jimenez,,A. and J. Davies. Expression of a transposable antibiotic resistance element in Saccharomyces. Nature, 287: 869–871 (1980).CrossRefGoogle Scholar
  17. 17.
    King, B. 0., Shade, R. 0., and R. A. Lansman. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural population, III Techniques and potential application. Plasmid, (In Press).Google Scholar
  18. 18.
    Krumlauf, R., and Marzluf, G.A. Genome organization and characterication of the repetitive and inverted repeat DNA sequences in Neurospora crassa. J. Biol. Chem., 255: 1138–1145 (1980).Google Scholar
  19. 19.
    Kushner, S. R. An improved method for transformation of Escherichia coli with ColEl derived plasmids. Genetic Engineering, H, W. Boyer and S. Nicosia, Eds. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, 17–23 (1978).Google Scholar
  20. 20.
    McBride, 0. W., and J. L. Peterson. Chromosome-mediated gene transfer in mammalian cells. Ann. Rev. Genet., 14: 321–45 (1980).CrossRefGoogle Scholar
  21. 21.
    Mishra, N. C. DNA-mediated genetic changes in Neurospora crassa. J. Gen. Microbiol., 113: 255–259 (1979).Google Scholar
  22. 22.
    Mishra, N. C., and E. L. Tatum. Non-Mendelian inheritance of DNA induced inositol independence in Neurospora crassa. Proc. Nat. Acad. Sci., USA, 70: 3873–3879 (1973).Google Scholar
  23. 23.
    Peberdy, J.F. Fungal protoplasts, isolation, reversion, fusion. Ann. Rev. Microbio., 33: 21–39 (1979).CrossRefGoogle Scholar
  24. 24.
    Perkins, D. P., and E. G. Barry. The cytogenetics of Neurospora. Adv. Genetics., 19: 133–285 (1977).CrossRefGoogle Scholar
  25. 25.
    Petes, T. D. Molecular genetics of yeast. Ann. Rev. Biochem. 49: 845–876 (1980).CrossRefGoogle Scholar
  26. 26.
    Schablik, M., Szabolcs, M., Kiss, A., Aradj, J., Zsindeley, A., and G. Szabo. Conditions of transformation by DNA of Neurospora crassa Acta. Biological Academiae Scientiarum Hungaricae, 28: 273–279 (1977).Google Scholar
  27. 27.
    Schweizer, M., Case, M. E., Dykstra, C. C., Giles, N. H., and S. R. Kushner. Cloning the quinic acid (qa) gene cluster from Neurospora crassa: Identification of recombinant plasmids containing both qa-2 + and qa-3 +. Gene (In Press).Google Scholar
  28. 28.
    Schweizer, M., Case, M. E., Dykstra, C. C., Giles, N. H., and S. R. Kushner. Identification and characterization of recombinant plasmids carrying the complete qa gene cluster from Neurospora crassa including the qa-l+ regulatory gene. Proc. Nat. Acad. Sci., (In Press).Google Scholar
  29. 29.
    Stahl, W., Kuck, U., Tudzynski, P. T., and K. Esser. Characterization and cloning of plasmid like DNA of the ascomycete Podospora anserina. Molec. Gen. Genet., 178: 639646 (1980).Google Scholar
  30. 30.
    Stinchcomb, D. T., Thomas, M., Kelley, J., Selker, E., and R. W. Davis. Eucaryotic DNA segments capable of autonomous replication in yeast. Proc. Nat. Acad. Sci. USA, 77: 45594563 (1980).Google Scholar
  31. 31.
    Trevithick, J. R., and R. L. Metzenberg. The invertase isozyme formed by Neurospora protoplasts. Biochem. Biophys. Res. Commun., 16: 319–325 (1964).CrossRefGoogle Scholar
  32. 32.
    Ullrich, R. C., Droms, K. A., Doyon, J. D., and C. A. Specht. Characterization of DNA from the basidiomycete Schizophyllum commune. Expt. Mycology., 4: 123–134 (1980).CrossRefGoogle Scholar
  33. 33.
    Vapnek, D., Hautala, J. A., Jacobson, J. W., Giles, N. H., and S. R. Kushner. Expression in Escherichia coli K-12 of the structural gene for catabolic dehydroquinase of Neurospora crassa. Proc. Nat. Acad. Sci. USA, 74: 3508–3512 (1977).CrossRefGoogle Scholar
  34. 34.
    Wootton, J. C., Fraser, M. J., and A. J. Baron. Efficient transformation of germinating Neurospora conidia using total nuclear fragments. Neurospora Newsletter, 27: 33 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Mary E. Case
    • 1
  1. 1.Department of Molecular and Population GeneticsUniversity of GeorgiaAthensGeorgia

Personalised recommendations