Advertisement

Electron Microscope Studies of Irradiation Damage in Metals and Alloys

  • B. L. Eyre

Abstract

Irradiation of crystalline solids with energetic particles results in the generation of lattice point defects and of transmutation products. At practically relevant temperature, i.e. > 20°C, a majority of the point defects are lost by recombination or migration to fixed sinks. However, a significant fraction may survive to aggregate into clusters and it is these surviving clustered point defects that form an evolving damage structure. Both the morphology of the clusters and their distribution are generally influenced by the presence of solute atoms and particularly important here are hydrogen and helium atoms generated by transmutation reactions during neutron irradiation. It is emphasised that the clustered point defects can cause large changes in physical and mechanical properties. Such changes can result in problems of considerable importance in nuclear (fission or fusion) reactor components. We shall discuss the contribution made by transmission electron microscopy (TEM) to the study of irradiation damage structures. As an introduction we shall summarise briefly the main factors involved in defect production and initial defect distributions during irradiation. This will be followed by a description of image contrast from point defect clusters observed in the electron microscope and the methods used to analyse the properties of such defects. Finally, we will highlight the principle results from electron microscope studies of irradiation damage in metals and alloys.

Keywords

Electron Microscope Study Irradiation Damage Dislocation Loop High Stack Fault Energy Edge Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Seitz, Disc. Farady Soc., 5, 571 (1949).Google Scholar
  2. 2.
    E.A. Kenik, T.E. Mitchell (1976) Private communication reported by J.H. Gittus in Ref. (5).Google Scholar
  3. 3.
    J. Lomer and M. Pepper, Phil. Mag., 16, 1119 (1967).CrossRefGoogle Scholar
  4. 4.
    M. Biget, F. Maury, P. Vajda, A. Lucasson and P. Lucasson, Radiation Effects, 7, 223 (1971).CrossRefGoogle Scholar
  5. 5.
    J.H. Gittus, “Irradiation Effects in Crystalline Solids”, Applied Science Ltd., (1978).Google Scholar
  6. 6.
    M.W. Thompson, “Defects and Radiation Damage in Metals” Cambridge University Press (1969).Google Scholar
  7. 7.
    G.H. Kinchin and R.S. Pearse, Rep. Progr. Phys., 18 (1955).Google Scholar
  8. 8.
    M.J. Norgett, M.T. Robinson and I.M. Torrens, Nucl. Eng. Design, 33, 50 (1975).CrossRefGoogle Scholar
  9. A. Seeger, Proc. 2nd Internat. Conf. Peaceful Uses of Atomic Energy, Geneva, (1958), Vol. 6, p. 250, United Nations, New York.Google Scholar
  10. 10.
    D. Seidman, J. Phys. F., 3, 393 (1973).CrossRefGoogle Scholar
  11. 11.
    W. Schilling, “Properties of Atomic Defects in Metals”, Proc. of Int. Conf. Argonne, Illinois, Oct. 1976, Eds: N.L. Peterson and R.W. Seigel, North-Holland Publishing Co.Google Scholar
  12. 12.
    R.S. Barnes, Disc, Faraday Soc., 31, 38 (1961).CrossRefGoogle Scholar
  13. 13.
    B.L. Eyre and R. Bullough, Phil. Mag., 12, 31 (1965).CrossRefGoogle Scholar
  14. 14.
    J. Silcox and P.B. Hirsch, Phil. Mag., 3, 897 (1958).CrossRefGoogle Scholar
  15. 15.
    D.M. Maher and B.L. Eyre, Phil. Mag., 23, 409 (1971).CrossRefGoogle Scholar
  16. 16.
    B.L. Eyre, D.M. Maher and A.F. Bartlett, Phil. Mag., 23, 439 (1971).CrossRefGoogle Scholar
  17. 17.
    M. Rühle, Phys. Stat. Sol., 19, 263 (1967).CrossRefGoogle Scholar
  18. 18.
    M. Rühle, Phys. Stat. Sol., 19, 279 (1967).CrossRefGoogle Scholar
  19. 19.
    K.G. Mclntyre and L.M. Brown, J. Phys. Radium, 27, 3 (1966).Google Scholar
  20. 20.
    R. Bullough, D.M. Maher and R.C. Perrin, Phys. Stat. Sol.(b) 43, 689 (1971).CrossRefGoogle Scholar
  21. 21.
    D.M. Maher, R. Bullough and R.C. Perrin, Phys. Stat. Sol. (b) 43, 707 (1971).CrossRefGoogle Scholar
  22. 22.
    B.L. Eyre, D.M. Maher and R.C. Perrin, J. Phys. F., 7, 1359 (1977).CrossRefGoogle Scholar
  23. 23.
    B.L. Eyre, D.M. Maher and R.C. Perrin, J. Phys. F., 7, 1371 (1977).CrossRefGoogle Scholar
  24. 24.
    S.M. Holmes, B.L. Eyre, C.A. English and R.C. Perrin, J. Phys. F., 9, 2307 (1979).CrossRefGoogle Scholar
  25. 25.
    C.A. English, B.L. Eyre and S.M. Holmes, J. Phys. F., 10, 1965 (1980).CrossRefGoogle Scholar
  26. 26.
    D.K. Saldin, A.Y. Stathopoulos and M.J. Whelan, Phil. Trans. Roy. Soc., 292, 513 (1979).CrossRefGoogle Scholar
  27. 27.
    H. Diepers, Phys. Stat. Sol., 24, 235 and 623 (1967).Google Scholar
  28. 28.
    M. Wilkes, Proc. Int. Conf. held at Gatlinburg, Tennessee, USA, 1, 98 (1975). Eds. M.T. Robinson and. F.W. Young (ORNL CONF (5, 1006 - p.2).Google Scholar
  29. 29.
    B.L. Eyre, J. Phys. F., 3, 422 (1973).CrossRefGoogle Scholar
  30. 30.
    A. Stathopoulos, D. Phil Thesis, Oxford University (1978).Google Scholar
  31. 31.
    M. Rühle, “Radiation Damage in Reactor Materials”, I.A.E.A. Vienna, p. 113 (1969).Google Scholar
  32. 32.
    B.L. Eyre, “Defects in Refractory Metals”, in: Proceedings of Conf. Mol., Belgium: SCK/CEN, p. 311 (1972).Google Scholar
  33. 33.
    B.L. Eyre, “Fundamental Aspects of Radiation Damage in Metals”, Vol. II, p. 729, Proc. Conf: Gatlinburg, Tennessee, USA (1975) (ORNL CONF 75, 1006 - p.2).Google Scholar
  34. 34.
    B.L. Eyre, M.H. Lorretto and R.E. Smallman, “Vacancies 76”, Proc. of Conf. Bristol 1976, ( Metals Society).Google Scholar
  35. 35.
    M. Wilkes, “Vacancies and Interstitials in Metals”, North Holland, Amsterdam, p. 485 (1970).Google Scholar
  36. 36.
    M. Kiritani, “Fundamental Aspects of Radiation Damage in Metals”, Vol. II, p. 695, Proc. Conf. Gatlinburg, Tennessee, USA, 1975 (ORNL CONF 75, 1.006 - p.2).Google Scholar
  37. 37.
    M. Kiritani and H. Takate, “Properties of Atomic Defects in Metals”, Proceedings of Int. Conf., Argonne, Illinois. October, 1976, p. 277, Eds: N.L. Peterson and R.W. Seigal, North-Holland Publishing Company.Google Scholar
  38. 38.
    A.D. Marwick, J. Nucl. Matis., 55, 259 (1975).CrossRefGoogle Scholar
  39. 39.
    K.B. Winterbon, P. Sigmund and J.P. Sanders, Mat.-fys. Skr., 37, 14 (1970).Google Scholar
  40. 40.
    M.L. Jenkins, C.A. English and B.L. Eyre, Phil. Mag., 38, 97 (1978).CrossRefGoogle Scholar
  41. 41.
    A.D. Brailsford and R. Bullough, J. Nucl. Mat., 44, 121 (1972).CrossRefGoogle Scholar
  42. 42.
    L.M. Brown, A. Kelly and R.M. Mayer, Phil. Mag., 19, 721 (1969).CrossRefGoogle Scholar
  43. 43.
    N. Yoshida and M. Kiritani, J. Phys. Soc. Japan, 35, 1418 (1973).CrossRefGoogle Scholar
  44. 44.
    M.R. Haynes, J. Nucl. Matls., 56, 267 (1975).CrossRefGoogle Scholar
  45. 45.
    M.K. Hossain and L.M. Brown, “High Voltage Electron Microscopy”, Academic Press, p. 360 (1974).Google Scholar
  46. 46.
    G. Vogel and W. Mansel, “Fundamental Aspects of Radiation Damage in Metals”, p. 349, Proc. Conf. - Gatlinburg, Tennessee, USA, (ORNL CONF 75, 1006 - p.2).Google Scholar
  47. 47.
    M.L. Swanson, L.M. Howe and A.F. Quenneville, ibid, p. 316.Google Scholar
  48. 48.
    B.C. Masters, Phil. Mag., 11, 881 (1975).CrossRefGoogle Scholar
  49. 49.
    E.A. Little and B.L. Eyre, Metals Science Journal, 7, 100 (1973).CrossRefGoogle Scholar
  50. 50.
    E.A. Little, R. Bullough and M.H. Wood, Harwell Report AERER9678 (to be published).Google Scholar
  51. 51.
    S. Karrim, unpublished work, University of Birmingham.Google Scholar
  52. 52.
    M.E. Whitehead, unpublished work, University of Birmingham.Google Scholar
  53. 53.
    E.G. Tapetado et al., Crystal Lattice Defects, 5, 199 (1974).Google Scholar
  54. 54.
    S.N. Buckley and S.A. Manthorpe, J. Nucl. Matls., 65, 295 (1977).CrossRefGoogle Scholar
  55. 55.
    D.S. Gells and J.E. Harbottle, CEGB Report (1974).Google Scholar
  56. 56.
    P.M. Kelly and R.G. Blake, Phil. Mag., 28, 415 (1973).CrossRefGoogle Scholar
  57. 57.
    D.I.R. Norris, Phil. Mag., 22, 1273 (1970).CrossRefGoogle Scholar
  58. 58.
    K. Urban, Phys. Stat. Sol. (a), 4, 761 (1971).CrossRefGoogle Scholar
  59. 59.
    K. Urban and M. Wilkens, Phys. Stat. Sol. (a), 6, 173 (1971).CrossRefGoogle Scholar
  60. 60.
    B.L. Eyre and D.M. Maher, Phil. Mag., 24, 767 (1971).CrossRefGoogle Scholar
  61. 61.
    J. Brimhall and B. Mastel, Rad. Effects, 3, 203 (1970).CrossRefGoogle Scholar
  62. 62.
    B.L. Eyre, D.M. Maher and A.F. Bartlett, Phil. Mag., 23, 409 (1971).CrossRefGoogle Scholar
  63. 63.
    J. Bentley, Ph.D. thesis, Birmingham University (1975).Google Scholar
  64. 64.
    M.I. Ipohorski and M. Spring, Phil. Mag., 20, 937 (1969).CrossRefGoogle Scholar
  65. 65.
    D.N. Seidman, J. Phys. F., 3, 393 (1973).CrossRefGoogle Scholar
  66. 66.
    M.L. Jenkins, N.G. Norton and C.A. English, Phil. Mag., 40, 131 (1979).CrossRefGoogle Scholar
  67. 67.
    E.A. English and M.L. Jenkins, Phil. Mag. To be published.Google Scholar
  68. 68.
    M. Wilson, Phil. Mag., 24, 1023 (1971).CrossRefGoogle Scholar
  69. 69.
    M. Wilson and P.B. Hirsch, Phil. Mag., 25, 983 (1972).CrossRefGoogle Scholar
  70. 70.
    F. Haussermann, Phil. Mag., 25, 537 (1972).CrossRefGoogle Scholar
  71. 71.
    M.L. Jenkins, Phil. Mag., 29, 813 (1974).Google Scholar
  72. 72.
    C.A. English, B.L. Eyre and J. Summers, Phil. Mag., 34, 603 (1976).CrossRefGoogle Scholar
  73. 73.
    A. Stathopoulos, To be published.Google Scholar
  74. 74.
    C.A. English, B.L. Eyre, H.N.G. Wadley and A.F. Bartlett, Phil. Mag., 35, 533 (1977).CrossRefGoogle Scholar
  75. 75.
    F. Haussermann, M. Rühle and M. Wilkens, Phys. Stat. Sol., 50, 445 (1972).CrossRefGoogle Scholar
  76. 76.
    C.A. English, unpublished work.Google Scholar
  77. 77.
    T.M. Williams and B.L. Eyre, J. Nucl. Matis., 59, 18 (1976).CrossRefGoogle Scholar
  78. 78.
    A. Stathopoulos, C.A. English, B.L. Eyre and P.B. Hirsch, to be published.Google Scholar
  79. 79.
    J. Muncie, Ph.D. Thesis, University of Sussex (1980).Google Scholar
  80. 80.
    W. Jagar and M. Wilkens, Phys. Stat. Sol., 32, 89 (1975).CrossRefGoogle Scholar
  81. 81.
    Voids Formed by Irradiation of Reactor Materials“, Conf. Proc. Ed. by S.F. Pugh, M.H. Coretto and D.I.R. Norris, Published by BNES (1972).Google Scholar
  82. 82.
    Radiation Induced Voids in Metals“, Conf. Proc. Edited by J.W. Corbett and I.C. Ianello, Published by USAEC (1972).Google Scholar
  83. 83.
    The Physics of Irradiation Produced Voids“, Conf. Proc. Ed. by R.S. Nelson, Published by AERE, Harwell, Report No.7934 (1975).Google Scholar
  84. 84.
    R. Bullough, B.L. Eyre and R.C. Perrin, Nucl. Appl. and Tech., 9, 346 (1970).Google Scholar
  85. 85.
    S.D. Harkness and Che Yu Li, Met. Trans., 2, 1457 (1971).Google Scholar
  86. 86.
    R. Bullough, B.L. Eyre and K. Krishan, Proc. Roy. Soc., A346 81 (1975).CrossRefGoogle Scholar
  87. 87.
    J.M. Lanore et al., “Fundamental Aspects of Radiation Damage in Metals” (1975) VII Proc. Int. Conf. Gatlinburg, Tennessee, USA, (ORNL CONF. 75, 1006 - p.2).Google Scholar
  88. 88.
    T.M. Williams and B.L. Eyre, J. Nucl. Matis., 59, 18 (1976).CrossRefGoogle Scholar
  89. 89.
    T.M. Williams, D.R. Arkell and B.L. Eyre, J. Nucl. Matis., 80, 111 (1980).CrossRefGoogle Scholar
  90. 90.
    J.H. Evans, Nature, 229, 403 (1971).CrossRefGoogle Scholar
  91. 91.
    B.L. Eyre and A.F. Bartlett, J. Nucl. Mati., 47, 143 (1973).CrossRefGoogle Scholar
  92. 92.
    S.L. Sass and B.L. Eyre, Phil. Mag., 27, 1447 (1973).CrossRefGoogle Scholar
  93. 93.
    E.A. Little and D.A. Stow, J. Nucl. Matis., 87, 25 (1979).CrossRefGoogle Scholar
  94. 94.
    A.F. Bartlett, J.H. Evans, B.L. Eyre, E.A. Terry and T.M. Williams, Proc. of Internat. Conf. on ‘Radiation Effects and Tritium Technology for Fusion Reactors’, Gatlinburg, Tennessee, USA October 1975.Google Scholar
  95. 95.
    R.C. Bullough, B.L. Eyre and G.L. Kulcinski, J. Nucl. Matis., 68, 168 (1977).CrossRefGoogle Scholar
  96. 96.
    K.C. Thompson and J.W. Edington, “Electron Microscope Specimen Preparation Techniques in Materials Science”, N.V. Philips, Gloeilamperfabrieken, Eindhoven, Holland (1977).Google Scholar
  97. 97.
    A. Howie and M.J. Whelan, Proc. Roy. Soc., A 263, 217 (1961).CrossRefGoogle Scholar
  98. 98.
    A. Howie and M.J. Whelan, Proc. Roy. Soc., A 267, 206 (1962).CrossRefGoogle Scholar
  99. 99.
    P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan, “Electron Microscopy of Thin Crystals”, Butterworths, London (1965).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • B. L. Eyre
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of LiverpoolUK

Personalised recommendations