Structure Analysis of Coals by Resolution Enhanced Solid State 13C NMR Spectroscopy

  • Edward W. Hagaman
  • M. C. Woody

Abstract

Solid state 13C nmr spectroscopy employing the experimental techniques of dipolar decoupling,2,3 magic angle spinning4,5 and 1H-13C cross polarization3 (CP/MAS-13C nmr spectroscopy) yields spectra which approach solution 13C-FT-nmr spectra in resolution and sensitivity. Resonance linewidths of 10–50 Hz in discrete organic substances are typical. Those in amorphous solids and glassy polymers generally are degraded to 50–150 Hz (2–6 ppm at 2.35T) by chemical shift dispersion and/or residual dipolar broadening.5–10 In homogeneous systems, this level of resolution permits the measurement of isotropic chemical shift and relaxation time parameters in solids.

Keywords

Carbide Manifold Attenuation Hydrocarbon Shale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.Google Scholar
  2. 2.
    L. R. Sarles and R. M. Cotts, Double Nuclear Magnetic Resonance and the Dipole Interaction in Solids, Phys. Rev. 111: 853 (1958).CrossRefGoogle Scholar
  3. 3.
    A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced NMR of Dilute Spins in Solids, J. Chem. Phys. 59: 569 (1973).CrossRefGoogle Scholar
  4. 4.
    E. R. Andrew, The Narrowing of NMR Spectra of Solids by High-Speed Specimen Rotation and the Resolution of Chemical Shifts and Spin Multiplet Structures for Solids, in “Progress in Nuclear Magnetic Resonance Spectroscopy,” J. W. Ensley, J. Feeney, and L. H. Sutcliffe, eds., Pergamon Press, Oxford (1972).Google Scholar
  5. 5.
    J. Schaefer, E. O. Stejskal and R. Buchdahl, High-Resolution Carbon-13 Nuclear Magnetic Resonance Study of Some Solid Glassy Polymers, Macromolecules 8: 291 (1975).CrossRefGoogle Scholar
  6. 6.
    J. Schaefer and E. O. Stejskal, Carbon-13 Nuclear Magnetic Resonance of Polymers Spinning at the Magic Angle, J. Am. Chem. Soc. 98: 1031 (1976).CrossRefGoogle Scholar
  7. 7.
    J. Schaefer, E. O. Stejskal, and R. Buchdahl, Magic-Angle 13C NMR Analysis of Motion in Solid Glassy Polymers, Macromolecules 10: 384 (1977).CrossRefGoogle Scholar
  8. 8.
    C. A. Fyfe, J. R. Lyerla, W. Volksen, and C. S. Yannoni, High-Resolution Carbon-13 Nuclear Magnetic Resonance Studies of Polymers in the Solid State. Aromatic Polyesters, Macromolecules 12: 757 (1979).CrossRefGoogle Scholar
  9. 9.
    W. L. Earl and D. L. Vanderhart, Observations in Solid Polyethylenes by Carbon-13 Nuclear Magnetic Resonance with Magic Angle Sample Spinning, Macromolecules 12: 762 (1979).CrossRefGoogle Scholar
  10. 10.
    W. S. Veeman, E. M. Menger, W. Ritchey, and E. deBoer, High-Resolution Carbon-13 Nuclear Magnetic Resonance of Solid Poly(oxymethylene), Macromolecules 12: 924 (1979).CrossRefGoogle Scholar
  11. 11.
    D. L. Vanderhart and H. L. Retcofsky, Estimation of Coal Aromaticities by Proton-decoupled Carbon-13 Magnetic Resonance Spectra of Whole Coals, Fuel 55: 202 (1976).CrossRefGoogle Scholar
  12. 12.
    V. J. Bartuska, G. E. Maciel, J. Schaefer, and E. O. Stejskal, Prospects for Carbon-13 Nuclear Magnetic Resonance Analysis of Solid Fossil Fuel Materials, Fuel 56: 354 (1977).CrossRefGoogle Scholar
  13. 13.
    H. L. Retcofsky and D. L. “Vanderhart” 13C-1H Cross-polarization Nuclear Magnetic Resonance Spectra of Macérais from Coal, Fuel 57: 421 (1978).CrossRefGoogle Scholar
  14. 14.
    K. W. Zilm, R. J. Pugmire, D. M. Grant, R. E. Wood, and W. H. Wiser, A Comparison of the Carbon-13 NMR Spectra of Solid Coals and their Liquids Obtained by Catalytic Hydrogénation, Fuel 58: 11 (1979).CrossRefGoogle Scholar
  15. 15.
    G. E. Maciel, V. J. Bartuska, and F. P. Miknis, Characterization of Organic Material in Coal by Proton-decoupled 13C Nuclear Magnetic Resonance with Magic Angle Spinning, Fuel 58: 391 (1979).CrossRefGoogle Scholar
  16. 16.
    H. A. Resing, A. N. Garroway, and R. N. Hazlett, Determination of Aromatic Hydrocarbon Fraction in Oil Shale by 13C N.M.R. with Magic-Angle Spinning, Fuel 57: 450 (1978).CrossRefGoogle Scholar
  17. 17.
    F. P. Miknis, G. E. Maciel, and V. J. Bartuska, Cross Polarization Magic-Angle Spinning 13C N.M.R. Spectra of Oil Shales, Org. Geochem. 1: 169 (1979).CrossRefGoogle Scholar
  18. 18.
    I. D. Campbell, C. M. Dobson, R. J. P. Williams, and A. V. Xavier, Resolution Enhancement of Protein PMR Spectra Using the Difference Between a Broadened and a Normal Spectrum, J. Magn. Res. 11: 172 (1973).Google Scholar
  19. 19.
    R. R. Ernst, Sensitivity Enhancement in Magnetic Resonance, in “Advances in Magnetic Resonance,” J. S. Waugh, ed., Academic Press, New York (1966).Google Scholar
  20. 20.
    Cf. C. H. A. Seiter, G. W. Feigenson, S. I. Chan, and M.-C. Hsu, Delayed Fourier Transform Proton Magnetic Resonance Spectroscopy, J. Am. Chem. Soc. 94: 2535 (1972).CrossRefGoogle Scholar
  21. 21.
    S. R. Hartmann and E. L. Hahn, Nuclear Double Resonance in the Rotating Frame, Phys. Rev. 128: 2042 (1962).CrossRefGoogle Scholar
  22. 22.
    K. Niemann and H.-P. Hombach, Studies in the Chemical Characterization of Coal: Reduction Via Solvated Electrons, Fuel 58: 853 (1979).CrossRefGoogle Scholar
  23. 23.
    C. J. Collins, H.-P. Hombach, B. Maxwell, M. C. Woody, and B. M. Benjamin, Carbon-Carbon Cleavage during Birch-Hlickel-Type Reductions, J. Am. Chem. Soc. 102: 851 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Edward W. Hagaman
    • 1
  • M. C. Woody
    • 1
  1. 1.Chemistry DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations