Advertisement

Near-Surface Modifications for Improved Crack Tolerant Behavior of High Strength Alloys: Trends and Prospects

  • L. R. Hettche
  • B. B. Rath
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 26)

Abstract

Ostensibly the purpose of this paper is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. The scientific complexity and broad technological importance of this general topic are well documented. Indeed, many of the papers presented at this conference bear directly or indirectly, on these subjects - e.g., hydrogen embrittlement and stress corrosion cracking; whereas the recent DC-10 tragic crash bears mute testimony to the timeliness of the subject.

Keywords

Stress Corrosion Laser Surface High Cycle Fatigue Plane Strain Fracture Toughness High Strength Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Hettche and B. B. Rath, Fabrication and Processing Technology for Improved Crack Tolerant Properties of Structural Alloys: Current R & D Activities and Emergent Research Opportunities NRL Memo Rept. 4148, (1980).Google Scholar
  2. 2.
    T. W. Crooker, Fracture Mechanics Fatigue Design, “Mechanical Engineers”, Vol. 99, (1977).Google Scholar
  3. 3.
    G. Deamaley, J. H. Freeman, R. S. Nelson, and J. Stephen, “Ion Implantation”, North Holland, Amsterdam (1973).Google Scholar
  4. 4.
    N. E. W. Hartey, Tribological Effects in Ion Implanted Metals, in “Application of Ion Beams to Materials”, G. Carter, J.Google Scholar
  5. 5.
    Colligon, and W. A Grant, ed., Inst, of Physics Conf., Ser. No. 28 (1976).Google Scholar
  6. 5.
    M. W. Thompson, Applications of Ion Implantation Outside the Semiconductor Area, in Proc. Europ. Conf. on Ion Implantation, Peregrinus (1970).Google Scholar
  7. 6.
    W. W. Hu, C. R. Clayton, and J. K. Hirvonen, Fatigue-Life Enhancement by Ion Implantation, Scripta Met. 12, (1978).Google Scholar
  8. 7.
    J. K. Hirvonen, C. A. Carosella, R. A. Kant, I. Singer, R. G. Vardiman, and B. B. Rath, Thin Solid Films 63, 5 (1979) and R. G. Vardiman and R. A. Kant, (to be published).Google Scholar
  9. 8.
    D. F. Neal and P. A. Blenkinsop, Internal Fatigue Origins in a - 3 Titanium Alloys, Acta Metall. 24:59 (1976); J. Quippen, R. Bhowal, D. Eylon, and Q. J. McEvily, Fatigue Mechanisms ed., J. T. Fong (ASTM-STP 675, 1979 ), p. 47.Google Scholar
  10. 9.
    B. H. Kear, E. M. Breinan, and E. R. Thompson, Laser Processing of Materials, in Proc. of the Soc. of Manuf. Engrs. Western Laser Conf., Los Angeles (1976).Google Scholar
  11. 10.
    R. A. Hello, Material Processing with High Power Lasers, “Optical Engineering”, Vol. 17 (1978).Google Scholar
  12. 11.
    L. S. Weiman, J. N. De Vault, and P. Moore, Properties of Rapid Solidified Laser Surface Alloyed, Low Carbon Steels, in Appl. of Lasers in Mat’l. Processing, E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  13. 12.
    D. S. Gnanamuthu, Laser Surface Treatment, in Appl. of Lasers in Mat’l. Processing, E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  14. 13.
    T. R. Anthony and H. E. Cline, Surface Normalization of Sensitized Stainless Steel by Laser Surface Melting, J. Appl. Phys., 49: 3 (1978).Google Scholar
  15. 14.
    P. Moore, C. Kim, and L. S. Weiman, Processing and Properties of Laser Surface Melted Titanium Alloys, in Appl. of Lasers in Mat’l. Processing, E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  16. 15.
    D. B. Snow and E. M. Breinan, Microstructural Transformations by the Laserglaze Process in Zircaloy-4 Sheet, in Appl. of Lasers in Mat’l. Processing, E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  17. 16.
    P. R. Strutt, H. Norvotney, M. Tuli and B. H., Kear, Laser Surface Melting of High Speed Tool Steels, Matfls. Sci. Eng. 36 (1978).Google Scholar
  18. 17.
    L. R. Hettche, T. R. Tucker, J. T. Schriempf, and R. L. Stegman, “Mechanical Response and Thermal Coupling of Metallic Targets to High Intensity 1.06 Laser Radiation,” J. App. Phys., Vol. 44, No. 9, Sep 1973, pp. 4079–4085.CrossRefGoogle Scholar
  19. 18.
    A. H. Clauer, B. P. Fairand, and B. A. Wilcox, “Laser Shock Hardening of Weld Zones in Aluminum Alloys,” Met. Trans. Vol. A 8A, 187, (1977).CrossRefGoogle Scholar
  20. 19.
    A. H. Clauer, B. P. Fairand, “Interaction of Laser-Induced Stress Waves with Metals,” E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  21. 20.
    W. F. Bates, Jr., “Laser Shock Processing of Aluminum Alloys,” E. A. Metzbower, ed., Am. Soc. for Metals, Washington, D. C. (1979).Google Scholar
  22. 21.
    G. R. Yoder, L. A. Cooley, and T. W. Crooker, “50-Fold Difference in Region-II Fatigue Crack Propagation Resistance of Titanium Alloys”: A Grain-Size Effect, J. of Eng. Mat’ls. and Tech., Trans. ASME, Series H. Vol. 101. No. 1, pp. 86–90, Jan (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • L. R. Hettche
    • 1
  • B. B. Rath
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations