Nonlinear Excitations in some Anharmonic Lattice Models

  • Helmut Büttner
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 77)


In recent years there has been a growing interest in anhar-monic lattice models, because of their relation to structural phase transitions, and to soliton dynamics and thermodynamics. It is not intended to discuss the many interesting results of the vast literature in these fields, since there exist already very good reviews1 2 or conference reports3 4. But instead I shall study some new aspects of an anharmonic ferroelectric model, the basic properties of which were investigated in two recent papers5 6. In addition some results7 for the Toda-lattice2 will be discussed and compared with those found by Schneider and Stoll8. In these two examples the nature of nonlinear excitations will be clarified and their contribution to various physical quantities will be investigated.


Original Lattice Phonon Branch Nonlinear Excitation Soliton Dynamic Dynamic Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Cowley, Adv. in Physics 29, 1 (1980)ADSCrossRefGoogle Scholar
  2. 1a.
    A. D. Bruce, Adv. in Physics 29, 111 (1980)MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    M. Toda, Suppl. Progr. Theor. Phys. 59, 1 (1976)ADSCrossRefGoogle Scholar
  4. 3.
    A. R. Bishop and T. Schneider, ed., Solitons and Condensed Matter Physics, Springer Series in Sol. State Science, Vol. 8 (1978)MATHGoogle Scholar
  5. 4.
    R. K. Bullough and P. J. Caudrey, ed., Solitons, Topics in Current Physics 17, Springer 1980MATHGoogle Scholar
  6. 5.
    H. Büttner and H. Bilz, in: Recent Developments in Condensed Matter Physics, Vol. I, ed. Devreese, Plenum, p. 49 (1981)Google Scholar
  7. 6.
    H. Bilz, A. Bussmann-Holder, W. Kress, H. Büttner and U. Schröder, preprintGoogle Scholar
  8. 7.
    F. G. Mertens and H. Büttner, submitted to Phys. LettersGoogle Scholar
  9. 8.
    T. Schneider and E. Stoll, Phys. Rev. B, to be publishedGoogle Scholar
  10. 9.
    R. Migoni, H. Bilz and D. Bäuerle, Phys. Rev. Lett. 37, 1155 (1976)ADSCrossRefGoogle Scholar
  11. 10.
    H. Bilz, A. Bussmann, G. Benedek, H. Büttner and D. Strauch, Ferroelectrics 25, 339 (1980)CrossRefGoogle Scholar
  12. 11.
    M. Balkanski, M. K. Teng, M. Massot and H. Bilz, Ferroelectrics 26, 737 (1980)CrossRefGoogle Scholar
  13. 12.
    D. Rytz, U. T. Höchli and H. Bilz, Phys. Rev. B22, 359 (1980)ADSGoogle Scholar
  14. 13.
    A. Bussmann, H. Bilz, R. Roenspiess and K. Schwarz, Ferroelectrics 25, 347 (1980)CrossRefGoogle Scholar
  15. 14.
    J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535 (1975)ADSGoogle Scholar
  16. 15.
    S. Aubry, J. Chem. Phys. 62, 3217 (1975)ADSCrossRefGoogle Scholar
  17. 16.
    E. Magyary, preprintGoogle Scholar
  18. 17.
    I. Gumowski and C. Mira, Recurrences and Discrete Dynamical Systems, Lecture Notes in Mathematics 809, Springer 1980Google Scholar
  19. 18.
    H. Büttner, to be publishedGoogle Scholar
  20. 19.
    P. Bak, Phys. Rev. Lett. 46, 791 (1981)MathSciNetADSCrossRefGoogle Scholar
  21. 20.
    J. D. Axe, M. Izumi and G. Shirane, Phys. Rev. B22, 3408 (1980)ADSGoogle Scholar
  22. 21.
    G. Behnke and H. Büttner, J. Phys. A: Math. Gen. 14, L113 (1981)ADSCrossRefGoogle Scholar
  23. 22.
    H. Büttner and F. G. Mertens, Sol. State Comm. 29, 663 (1979)CrossRefGoogle Scholar
  24. 22a.
    F. G. Mertens and H. Büttner, in: Recent Developments in Cond. Matter Phys., ed. Devreese, Plenum 1981Google Scholar
  25. 23.
    H. Flaschka, Progr. Theor. Phys. 51, 703 (1974)MathSciNetADSCrossRefGoogle Scholar
  26. 23a.
    D. W. McLaughlin, Journ. Math. Phys. 16, 96 (1975)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 23a.
    D. W. McLaughlin, Journ. Math. Phys. 16, 1704 (1975)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 24.
    H. Bolterauer and M. Opper, Z. f. Physik, to be published; Phys. Letters 83A, 69 (1981)MathSciNetADSGoogle Scholar
  29. 25.
    S. Dietrich, Z. f. Physik, submittedGoogle Scholar
  30. 26.
    F. G. Mertens and H. Büttner, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Helmut Büttner
    • 1
  1. 1.Phys. InstitutUniversität BayreuthBayreuthW.-Germany

Personalised recommendations