Instabilities During Crystal Growth (Experiments)

  • J. H. Bilgram
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 77)


In this paper mainly instabilities during crystal growth from the melt (during freezing) are discussed. The solid-liquid transition shows several asymmetries with respect to freezing and melting. The non faceted — faceted transition and the sharp interface -diffuse interface transition occur during the freezing process only. There are dissimilarities in the dynamics of freezing and melting at conditions far from thermodynamical equilibrium. They might origin from the diffuse interface layer which first has been detected at growing ice single crystals by quasi elastic light scattering.


Crystal Growth Diffuse Interface Facet Transition Light Scattering Experiment Quasi Elastic Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Bentley and W. J. Humphreys, “Snow Crystals”, Dover, New York (1962)Google Scholar
  2. 2.
    A. R. Ubbelohde, “The molten state of matter”, Wiley, Chichester (1978)Google Scholar
  3. 3.
    K. A. Jackson, Mechanism of Growth, in: “Liquid Metals and Solidification”, ASM Cleveland (1958)Google Scholar
  4. 4.
    K.A. Jackson, Theory of Crystal Growth, in: “Treatise on Solid State Chemistry, Vol. 5, Changes of State,” H.B. Hannay, ed., Plenum, New York (1975)Google Scholar
  5. 5.
    D. Nason and W. A. Tiller, On the Lattice-Liquid Model for Interface Roughening, J. Cryst. Growth 10:117 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    L. Coudurier, N. Eustathopoulos et P. Desre, Rugosité atomique et adsorption chimique aux interfaces solid-liquide des systèmes metalliques binaires, Acta Metall.26:465 (1978)CrossRefGoogle Scholar
  7. 7.
    A. Neuhaus und G. Nitschmann, Zur Ausdeutung der Wachstumsergebnisse nach dem Nacken-Kyropoulos-Verfahren, Z. Elektrochemie 56:483 (1952)Google Scholar
  8. 8.
    H. J. Human, J. P. van der Eerden, L. A. M. J. Jetten and J. G. M. Odekerken, On the Roughening Transition of Biphenyl: Transition of Faceted to Non-Faceted Growth of Biphenyl for Growth from different Solvents and the Melt, J. Crystal Growth 51:589 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    W. K. Burton and N. Cabrera, Crystal Growth and Surface Structure, Disc. Faraday Soc. No. 5:33 (1949)CrossRefGoogle Scholar
  10. 10.
    J. D. Weeks and G. H. Gilmer, Dynamics of Crystal Growth, in: ‘Advances in Chemical Physics’ XL: 157 (1979)CrossRefGoogle Scholar
  11. 11.
    H. Müller-Krumbhaar, Surface Dynamics of Growing Crystals, in: “Festkörperprobleme XIX”, Vieweg, Braunschweig (1979)Google Scholar
  12. 12.
    K. A. Jackson and C. E. Miller, Experimental Observation of the Surface Roughening Transition in Vapor Phase Growth, J. Crystal Growth 40:169 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    B. Lampert and K. Reichelt, Anisotropy of Round Evaporation Spirals on Rocksalt Surfaces, J. Crystal Growth 47:77 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    A. Passerone, R. Sangiorgi and N. Eustathopoulos, Isothermal Faceted to Non-Faceted Equilibrium Transition of Solid-Liquid Interfaces in Zn-Bi-In Alloys, Scr. Metall. 14:1089 (1980)CrossRefGoogle Scholar
  15. 15.
    J. Landau, S. G. Lipson, L. M. Määttänen, L. S. Balfour and D. U. Edwards, Interface between Superfluid and Solid 4He, Phys. Rev. Letters 45:31 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    J. E. Avron, L. S. Balfour, C. G. Kuper, J. Landau, S. G. Lipson and L. S. Schulman, Roughening Transition in the 4He Solid-Superfluid Interface, Phys. Rev. Letters 45:814 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    C. E. Miller, Faceting Transition in Melt-Grown Crystals, J. Crystal Growth 42:357 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    W. T. Griffith, On the Transition from Faceted to Non-Faceted Growth in Melt-Grown Crystals, J. Crystal Growth 47:473 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    J. W. Cahn, Theory of Crystal Growth and Interface Motion in Crystalline Materials, Acta Metall. 8:554 (1960)CrossRefGoogle Scholar
  20. 20.
    J. W. Cahn and J. W. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys. 28:258 (1958)ADSCrossRefGoogle Scholar
  21. 21.
    J. H. Bilgram and P. Boni, Interface Fluctuations of Growing Ice Crystals, in: “Light Scattering in Liquids and Macromolecular Solutions”, V. Degiorgio, M. Corti and M. Giglio, ed., Plenum Publ. Corp. New York (1980)Google Scholar
  22. 22.
    H. Güttinger, J.H. Bilgram, W. Känzig, Dynamic Light Scattering at the Ice Water Interface during Freezing, J. Phys. Chem. Solids 40:55 (1979)CrossRefGoogle Scholar
  23. 23.
    J. H. Bilgram, H. Giittinger and W. Känzig, Fluctuations of the Ice-Water Interface during Solidification, Phys. Rev. Letters 40:1394 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    P. Böni und J. H. Bilgram, Fluktuationen in der Grenzschicht zwischen Eis und Wasser (H2O), Helv. Phys. Acta, to be published (1981)Google Scholar
  25. 25.
    C. L. O’Connor and J. P. Schlupf, Brillouin Scattering in Water: The Landau-Placzek Ratio, J. Chem. Phys. 47:31 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    J. Bilgram, H. Wenzl and G. Mair, Perfection of Zone Refined Ice Single Crystals, J. Crystal Growth 20:319 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    B. Chu, “Laser Light Scattering”, Academic Press, New York (1974)Google Scholar
  28. 28.
    W. B. Hillig, The Kinetics of Freezing of Ice in the Direction Perpendicular to the Basal Plane, in:“Growth and Perfection of Crystals” R. H. Doremus, B. W. Roberts and D. Turnbull, ed., John Wiley, New York (1958)Google Scholar
  29. 29.
    S. C. Hardy, A Grain Boundary Groove Measurement of the Surface Tension between Ice and Water, Philos. Mag. 35:471 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    H. E. Stanley, A polychromatic correlated-site percolation problem with possible relevance to the unusual behavior of supercooled H2O and D2O, J. Phys. A: Math. Gen. 12:L 329 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    B. Zysset, P. Böni und J. H. Bilgram, Lichtstreuung an der Phasengrenze fest/flüssig von D2O, Helv. Phys. Acta to be published (1981)Google Scholar
  32. 32.
    U. Dürig and J. H. Bilgram, Periodic Fluctuations at the Solid-Liquid Interface of Salol, this volumeGoogle Scholar
  33. 33.
    J. Teixeira and J. Leblond, Brillouin Scattering from Supercooled Water, J. Physique 39:L-83 (1978)Google Scholar
  34. 34.
    C. A. Angell, Supercooled Water, in: “Water a comprehensive Treaise, Vol. 7”, F. Franks, ed., Plenum, New York (1981)Google Scholar
  35. 35.
    A. N. Hunter, Measurements of the Velocity and Absorption of High-Frequency Ultrasonic Waves in Supercooled Liquids, Proc. Phys. Soc. 69:965 (1956)ADSCrossRefGoogle Scholar
  36. 36.
    R. F. Sekerka, Morphological Stability, in: “Crystal Growth, An Introduction” P. Hartman, ed., North Holland, Amsterdam (1973)Google Scholar
  37. 37.
    R. T. Delves, Theory of Interface Stability, in: “Crystal Growth” B.R. Pamplin, ed., Pergamon Press, Oxford (1975)Google Scholar
  38. 38.
    M. E. Glicksman, R. J. Schaefer and J.D. Ayers, Dendritic Growth — A Test of Theory, Metall. Trans. 7 A:1747 (1976)Google Scholar
  39. 39.
    S. C. Huang and M. E. Glicksman, Fundamentals of Dendritic Solidification — I. Steady-State Tip Growth, Acta Metall. 29: 701 (1981)CrossRefGoogle Scholar
  40. 40.
    U. Lappe, Experimentelle Untersuchung des dendritischen Wachstums von Kristallen in unterkühlten Schmelzen, Berichte der Kernforschungsanläge Jülich — Nr. 1671, Jülich (1980)Google Scholar
  41. 41.
    R. F. Sekerka, On the Modeling of Solid-Fluid Interface Dynamics, in: “Proceedings of the Darken Conference” p. 301, United States Steel Res. Lab. Monroeville, Pa. (1976)Google Scholar
  42. 42.
    J. S. Langer, R. F. Sekerka and T. Fujioka, Evidence for a universal law of dendritic growth rates, J. Crystal Growth 44:414 (1978)ADSCrossRefGoogle Scholar
  43. 43.
    J. S. Langer, Instabilities and pattern formation in crystal growth, Rev. Modern Phys. 52:1 (1980)ADSCrossRefGoogle Scholar
  44. 44.
    J. S. Langer, this volumeGoogle Scholar
  45. 45.
    E. S. Miksch, Equilibration of the Ice-Water Temperature Standard, Rev. Sci. Instr. 36:797 (1965)ADSCrossRefGoogle Scholar
  46. 46.
    J. Tyndall, “The glaciers of the alps”, London (1860)Google Scholar
  47. 47.
    J. Tyndall, “Die Wärme” Braunschweig (1871) transi. of “Heat considered as a mode of motion” London (1863)Google Scholar
  48. 48.
    M. Käss und S. Magun, Zur Ueberhitzung am Phasenübergang festflüssig, Z.Kristallogr. 116:354 (1961)CrossRefGoogle Scholar
  49. 49.
    G. J. Krüger und S. Magun, “Negative” Schneekristalle, Photographie und Forschung, Heft 8 (1955)Google Scholar
  50. 50.
    D. W. James, The Thermal Diffusivity of Ice and Water between -40 and +60°C, J. Mater. Sci. 3:540 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. H. Bilgram
    • 1
  1. 1.Laboratorium für FestkörperphysikEidgenössische Technische HochschuleZürichSwitzerland

Personalised recommendations