The Theory of Structural Phase Transitions: Universality and Quasi-Elastic Scattering Phenomena

  • Alastair D. Bruce
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 77)


The theoretical study of structural phase transitions over the last decade has been dominated by two continuing concerns. Firstly, much effort has been devoted to the determination of the universal quantities — principally critical exponents — characterising critical point singularities. The surge of activity in this area is mainly attributable to the development of renormalisation group (R.G.) methods1, making it possible to explore a great wealth of critical phenomena largely inaccessible to the techniques previously available. The second dominant theme has been an ever-growing interest in the patterns of short range order (s.r.o.) underlying critical point behaviour, and the qualitative characteristics which these patterns imply for the collective excitation spectrum near criticality. The motivation for much of the work in this field has been the evidence assembled from, successively, experiments2, computer-simulation hybrids of theory and experiment3 and theory itself4, suggesting that both the excitation spectrum and the underlying configurations of s.r.o. display important features, associated with cluster walls, which are not captured by classical phonon-based theories of structural phase transitions (s.p.t.’s).


Excitation Spectrum Short Range Order Central Peak Structural Phase Transition Critical Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Wilson, Phys Rev B4, 3174 (1971);ADSGoogle Scholar
  2. 1a.
    K.G. Wilson and J. Kogut, Phys Rep C12, 77 (1974).ADSGoogle Scholar
  3. 2.
    T. Riste, E.J. Samuelsen, K. Otnes and J. Feder, Solid St. Commun. 9,1455 (1971);Google Scholar
  4. 2a.
    S.M. Shapiro, J.D. Axe, G. Shirane and T. Riste, Phys Rev B6, 4332 (1972).ADSGoogle Scholar
  5. 3.
    T. Schneider and E. Stoll, Phys Rev Lett 31, 1254 (1973); 35, 296 (1975).ADSCrossRefGoogle Scholar
  6. 4.
    J.A. Krumhansl and J.R. Schrieffer, Phys. Rev. B11, 3535 (1975);Google Scholar
  7. 4a.
    S. Aubry, J. Chem Phys 62, 3217 (1975); 64,3392 (1976).ADSCrossRefGoogle Scholar
  8. 5.
    A.D. Bruce, Adv. in Physics 29, 111 (1980).Google Scholar
  9. 6.
    A.D. Bruce and R.A. Cowley, Adv in Physics 29, 219 (1980).ADSCrossRefGoogle Scholar
  10. 7.
    S. Sarbach, Phys Rev B15, 2694 (1977).MathSciNetADSGoogle Scholar
  11. 8.
    H. Thomas, “Structural Phase Transitions and Soft Modes” E.J. Samuelsen, E. Andersen and J. Feder eds., Universitetsforlaget, Oslo, p.15 (1971)Google Scholar
  12. 9.
    G.A. Baker and J.M. Kincaid, Phys Rev Lett 42, 1431 (1979).ADSCrossRefGoogle Scholar
  13. 10.
    B.G. Nickel, Proc. Cargese Summer Institute (1980), to be published.Google Scholar
  14. 11.
    R. Bausch and B.I. Halperin, Phys Rev B18, 190 (1978).ADSGoogle Scholar
  15. 12.
    M.E. Fisher, Proc Nobel Symposium 24, B. Lundquist and S. Lundquist eds. Academic Press, New York, p16 (1974).Google Scholar
  16. 13.
    R.B. Griffiths, Phys Rev 158, 176 (1967).ADSCrossRefGoogle Scholar
  17. 14.
    H.E. Stanley, “Introduction to Phase Transitions and Critical Phenomena”, Clarendon, Oxford (1971).Google Scholar
  18. 15.
    D. Stauffer, M. Ferer and M. Wortis, Phys Rev Lett 29, 345 (1972);ADSCrossRefGoogle Scholar
  19. 15a.
    P.C. Hohenberg, A. Aharony, B.I. Halperin and E.D. Siggia, Phys Rev B13, 2986 (1976).ADSGoogle Scholar
  20. 16.
    A.D. Bruce, Phys Rev Lett 44, 1 (1980).ADSCrossRefGoogle Scholar
  21. 17.
    D.D. Betts, J. Phys A12, 2287 (1979).ADSGoogle Scholar
  22. 18.
    A. Aharony and B.I. Halperin, Phys Rev Lett 35, 1308 (1975).ADSCrossRefGoogle Scholar
  23. 19.
    A.I. Larkin and D.E. Khmel’nitskii, Sov Phys JETP, 29, 1123 (1969).ADSGoogle Scholar
  24. 20.
    P. Heller, Int J Magn 1, 53 (1970).Google Scholar
  25. 21.
    J. Feder Solid St Commun 9, 2021 (1974); see also Ref. 6.Google Scholar
  26. 22.
    A.D. Bruce, J Phys C14, 193 (1981).ADSGoogle Scholar
  27. 23.
    D.R. Nelson, Phys Rev B14, 1123 (1976);ADSGoogle Scholar
  28. 23a.
    Y. Achiam and J.M. Kosterlitz, J Phys C 10, 4559 (1977).ADSCrossRefGoogle Scholar
  29. 24.
    I. Hatta, Y. Shiroishi, K.A. Müller and W. Berlinger, Phys Rev B16, 1138 (1977).ADSGoogle Scholar
  30. 25.
    J.C. LeGuillou and J. Zinn-Justin, Phys Rev B21, 3976 (1980).MathSciNetADSGoogle Scholar
  31. 26.
    E. Eisenriegler, Phys Rev B9, 1029 (1974).ADSGoogle Scholar
  32. 27.
    R.J. Glauber, J.Math Phys 4, 294 (1963);MathSciNetADSMATHCrossRefGoogle Scholar
  33. 27a.
    M. Suzuki and R. Kubo, J Phys Soc Japan 24, 51 (1968).ADSCrossRefGoogle Scholar
  34. 28.
    K.A. Müller, these proceedings.Google Scholar
  35. 29.
    T. Schneider and E. Stoll, Ferroelectrics 26, 67 (1980).CrossRefGoogle Scholar
  36. 30.
    W.C. Kerr, Phys Rev B19, 5773 (1979).ADSGoogle Scholar
  37. 31.
    J.F. Currie, J.A. Krumhansl, A.R. Bishop and S.E. Trullinger, Phys Rev B22, 477 (1980);MathSciNetADSGoogle Scholar
  38. 31a.
    G.F. Mazenko and P.S. Sahni, Phys Rev B18, 6139 (1978).MathSciNetADSGoogle Scholar
  39. 32.
    P.S. Sahni and G.F. Mazenko, Phys Rev B20, 4674 (1979).ADSGoogle Scholar
  40. 33.
    L.P. Kadanoff, Physics 2, 263 (1966).Google Scholar
  41. 34.
    A.Z. Patashinskii, Sov Phys JETP 26, 1126 (1968).ADSGoogle Scholar
  42. 35.
    G. Jona-Lasinio, Nuovo Cimento 26B, 99 (1975).MathSciNetADSGoogle Scholar
  43. 36.
    A.D. Bruce, to be published.Google Scholar
  44. 37.
    H. Cramer, Mathematical Methods of Statistics, Princeton U.P. (1946).Google Scholar
  45. 38.
    G.A. Baker and S. Krinsky, J. Math Phys 18, 590 (1976).MathSciNetADSCrossRefGoogle Scholar
  46. 39.
    S.K. Ma, “Modern Theory of Critical Phenomena”, Benjamin, Reading (1976).Google Scholar
  47. 40.
    A.D. Bruce, T. Schneider and E. Stoll, Phys Rev Lett 43, 1284 (1979).ADSCrossRefGoogle Scholar
  48. 41.
    A. Luther and I. Peschel, Phys Rev B12, 3908 (1975).ADSGoogle Scholar
  49. 42.
    L.P. Kadanoff “Phase Transitions and Critical Phenomena” Vol. 5a C. Domb and M.S. Green eds., Academic Press, New York p1 (1976).Google Scholar
  50. 43.
    A.D. Bruce, K.A. Müller and W. Berlinger, Phys Rev Lett 42, 185 (1979).ADSCrossRefGoogle Scholar
  51. 44.
    A. Abragham “The Principles of Nuclear Magnetism”, Clarendon, Oxford (1961).Google Scholar
  52. 45.
    P.D. Beale, S.K. Sarker and J.A. Krumhansl, Cornell preprint (1981).Google Scholar
  53. 46.
    J. Topler, B. Alefeld and A. Heidemann, J Phys C 10, 635 (1977)ADSCrossRefGoogle Scholar
  54. 47.
    D.J. Wallace in “Solitons and Condensed Matter Physics” A.R. Bishop and T. Schneider eds., Springer-Verlag, Berlin pl04 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alastair D. Bruce
    • 1
  1. 1.Department of PhysicsUniversity of EdinburghScotland, UK

Personalised recommendations