The Structure and Dynamics of Non-Stationary Taylor-Vortex Flow

  • A. Brandstäter
  • U. Gerdts
  • A. Lorenzen
  • G. Pfister
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 77)


In going from laminar to turbulent flow, the circular Couette flow passes through a sequence of space and time periodic flow patterns [1]. Increasing the Reynolds number, the first of the nonstationary flows may either be (i) the “wavy mode”, in which azimuthal waves are superimposed upon the stationary Taylor vortices, or (ii) the “jet instability”, where the fast outward flow oscillates in axial direction. For the wide gap geometry of our apparatus (R1/R2 = 0.5) both modes have wave number n = 1. Either of these modes may occur separately, depending on the boundary conditions and the wavelength of the stationary Taylor cells, so that neither one is a condition for the occurence of the other. We have studied both flow modes using conventional Laser-Doppler-Velocimetry and improved rate cross-correlation techniques.


Reynolds Number Critical Reynolds Number Vortex State Taylor Vortex Azimuthal Wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. C. Di Prima and H. L Swinney; in Topics in Appl. Physics, Vol. 45: Hydrodynamic Instabilities and the Transition to Turbulence, Ed. H. L. Swinney and J. P. Gollub, Springer-Verlag 1980, p. 139 and papers cited therein.Google Scholar
  2. [2]
    P. C. Martin; J. Physique 37, C1–57 (1976)Google Scholar
  3. [3]
    P. Bergé; in Dynamical Critical Phenomena and Related Topics, Edt.: C. P. Enz, Springer-Verlag (1979), p. 288CrossRefGoogle Scholar
  4. [4]
    R. J. Donnelly and K. W. Schwarz; Proc.Roy.Soc. Lond. A 283, 531–556 (1965)ADSGoogle Scholar
  5. [5]
    J. P. Gollub, M. H. Freilich; Phys. Fluids 19, 618–625 (1976)ADSCrossRefGoogle Scholar
  6. [6]
    J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand and P. Bergé; J. Physique Lett. 39, 725–731 (1978)CrossRefGoogle Scholar
  7. [7]
    G. Pfister and I. Rehberg; Phys. Letters 1981 (in print)Google Scholar
  8. [8]
    H. Haken; Synergetics, p. 186, Springer-Verlag (1977)CrossRefGoogle Scholar
  9. [9]
    T. Mullin and T. B. Benjamin; Nature 288, p. 567 (1980)ADSCrossRefGoogle Scholar
  10. T. B. Benjamin, T. Mullin; Phil.Trans.Roy.Soc.A 1981 (i.print)Google Scholar
  11. [10]
    A. Davey; J. Fluid Mech. 14, 336–368 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  12. [11]
    R. Vehrenkamp, K. Schätzel, G. Pfister, B. Fedders and E. O. Schulz-DuBois; Physica Scripta 19, 379–382 (1979)ADSCrossRefGoogle Scholar
  13. [12]
    K. Schätzel; Optica Acta 27, 45–52 (1980)ADSCrossRefGoogle Scholar
  14. [13]
    U. Gerdts; Diplomarbeit University of Kiel (1980)Google Scholar
  15. [14]
    G. Pfister; Proc. from the 4th Internat. Conf. on Photon Correlation Techniques in Fluid Mech., Stanford, CA (1980)Google Scholar
  16. [15]
    G. Pfister and U. Gerdts; Phys. Letters (1981) (in print)Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. Brandstäter
    • 1
  • U. Gerdts
    • 1
  • A. Lorenzen
    • 1
  • G. Pfister
    • 1
  1. 1.Universität KielKielW-Germany

Personalised recommendations