A Rayleigh Bénard Experiment: Helium in a Small Box

  • A. Libchaber
  • J. Maurer
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 77)


This is a limited excursion in the field of hydrodynamical instabilities, in itself an infinite domain of research. It is first restricted to a Rayleigh Benard experiment, and we will study the case of a small Prandtl number fluid (0.4 < P < 1). To simplify the problem some more we shall restrict ourselves to the geometry of a small rectangular box with two or three convective rolls present. This somewhat artificial case allows us to truncate the degrees of freedom of the system and thus to define some simple bifurcations to turbulence.


Prandtl Number Rayleigh Number Bottom Plate Critical Rayleigh Number Oscillatory Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ahlers, R.W. Waiden, Phys. Rev. Lett., 44:445 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    J. Wesfreid, V. Croquette, Phys. Rev. Lett., 45:634 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    A. Libchaber, J. Maurer, Journal Phys. Lettres, 39:369 (1978).CrossRefGoogle Scholar
  4. 4.
    K. Stork, U. Müller, J. Fluid Mech., 71:231 (1975), 54:599 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    R.D. Mc Carthy, Thermophysical Properties of 4He, Bur. Stand. Tech. Note n° 631 (1972).Google Scholar
  6. 6.
    F.H. Busse, Report Progr. Physics 41:1929 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    M. Velarde, C. Normand, Scientific American, 243:78 (July 1980).CrossRefGoogle Scholar
  8. 8.
    E.L. Koschmieder, Adv. Chemical Physics, 26:177 (1974).CrossRefGoogle Scholar
  9. 9.
    M.E. Cross, P.G. Daniels, P.C. Hohenberg, E. Siggia, Phys. Rev. Lett., 45:898 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Pomeau, S. Zaleski, C. R. Acad. Sc. Paris, 290 (série B):505 (1980).MathSciNetADSGoogle Scholar
  11. 11.
    J. Maurer, A. Libchaber, J. Physique Lettres, 40:419 (1979).CrossRefGoogle Scholar
  12. 12.
    B.H. Busse, R.M. Clever, J. Fluid Mech., 91:319 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    J. Maurer, A. Libchaber, J. Phys. Lettres, 41:515 (1980).CrossRefGoogle Scholar
  14. 14.
    E. Siggia, A. Zippelius, “Dynamics of Defects in Rayleigh-Benard Convection”, preprint.Google Scholar
  15. 15.
    A. Libchaber, J. Maurer, J. de Physique, Coll. C3, 41:51 (1980).Google Scholar
  16. 16.
    A. Adler, Proc. I.R.E., 34:351 (1946).CrossRefGoogle Scholar
  17. 17.
    G. Iooss, Math. Studies, 36, New York (1979).Google Scholar
  18. 17a.
    G. Iooss, W.F. Langford, Annals of the New York Academy of Sciences, Vol. 327 (1980).Google Scholar
  19. 18.
    R.L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach (1967).MATHGoogle Scholar
  20. 18a.
    W.E. Lamb Jr., Phys. Rev., 134:429 (1964).ADSCrossRefGoogle Scholar
  21. 18b.
    B. Van der Pol, Phil. Mag., 3:65 (1927).Google Scholar
  22. 19.
    J.E. Flaherty, F.C. Hoppensteadt, Study Appl. Math., 58:5 (1978).MathSciNetGoogle Scholar
  23. 20.
    J.P. Gollub, E.J. Romer, J.E. Socolar, Journ. Stat. Phys., 23:321 (1980).MathSciNetADSCrossRefGoogle Scholar
  24. 21.
    J.P. Gollub, S.V. Benson, J. Fluid Mech., 100:449 (1980).ADSCrossRefGoogle Scholar
  25. 22.
    M. Dubois, Colloque Pierre Curie, Paris (1980).Google Scholar
  26. 22a.
    M. Dubois, P. Berge, J. Physique, 42:167 (1981).Google Scholar
  27. 23.
    G. Ahlers, R.L. Behringer, Phys. Rev. Lett., 40:712 (1978).ADSCrossRefGoogle Scholar
  28. 24.
    L. Landau, E. Lifshitz, Fluid Mechanics, Chapt. 3, Pergamon, Oxford (1959).Google Scholar
  29. 24a.
    D. Ruelle, F. Takens, Coram. Math. Phys., 20:167 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 24b.
    E.N. Lorenz, J. Atmos. Sci., 20:130 (1978).MathSciNetADSCrossRefGoogle Scholar
  31. 25.
    M.J. Feigenbaum, Phys. Lett., 74A:375 (1979); Coram. Math. Phys., 77:65 (1980).MathSciNetADSGoogle Scholar
  32. 25a.
    P. Coullet, C. Tresser, A. Arneodo, Phys. Lett., 72A:268 (1979).MathSciNetADSGoogle Scholar
  33. 26.
    J. Collet, J.P. Eckmann, “Iterated Maps of the Interval as Dynamical Systems”, Birkhaiiser (1980).Google Scholar
  34. 27.
    Lord Rayleigh, “The Theory of Sound”, Vol. I, Chapt. 3, Dover (1945).MATHGoogle Scholar
  35. 28.
    C. Bender, S. Orzag, “Advanced Math. Methods for Scientists”, McGraw Hill (1978).Google Scholar
  36. 29.
    M. Nauenberg, J. Rüdnick, “University and the Power Spectrum at the Onset of Chaos”, preprint.Google Scholar
  37. 30.
    M. Giglio, S. Musazzi, U. Perini, “Transition to Chaos via a Well Defined Ordered Sequence of Period Doubling”, preprint.Google Scholar
  38. 31.
    S. Grossmann, S. Thomae, Z. Naturforsch., 32a:1353 (1977).MathSciNetADSGoogle Scholar
  39. 31a.
    S. Thomae, S. Grossman, “Correlations and Spectra of Periodic Chaos Generated by the Logistic Parabola”, preprint.Google Scholar
  40. 31b.
    A. Wolf, J. Swift, “Universal Power Spectra for the Reverse Bifurcation Sequence”, preprint.Google Scholar
  41. 31c.
    B. Huberman, A. Zisook, Phys. Rev. Lett., 46:626 (1981).MathSciNetADSCrossRefGoogle Scholar
  42. 32.
    P. Manneville, Y. Pomeau, Phys. Lett., 75A:1 (1979).MathSciNetADSGoogle Scholar
  43. 32a.
    Y. Pomeau, P. Manneville, Physica, D1:219 (1980).MathSciNetADSGoogle Scholar
  44. 33.
    P. Bergé, M. Dubois, P. Manneville, Y. Pomeau, J. Phys. Lettres, 41:341 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. Libchaber
    • 1
  • J. Maurer
    • 1
  1. 1.Ecole Normale SupérieureGroupe de Physique des SolidesParis Cedex 05France

Personalised recommendations