Advertisement

The Structure of Eukaryotic Ribosomes

  • Ira G. Wool
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 41)

Abstract

I begin with a litany of the gospel. The grand design in research on eukaryotic ribosomes is to know the structure and the function of the organelle: to be able to specify the coordinates, and to define the activity, of each of the molecules in the particle, A subsidiary aim is to compare the structure of eukaryotic and prokaryotic ribosomes. There are significant differences between the two classes of particles. Those differences are the basis of what has been called the “central dilemma”. Eukaryotic ribosomes are appreciably larger: they contain a greater number of proteins, seventy-eighty rather than fiftytwo, and they have an extra molecule of RNA as well. Moreover, the proteins and nucleic acids are, on the average, larger. The difference in size is a paradox since eukaryotic ribosomes perform the same general function, namely to catalyze the synthesis of protein; more to the point, they appear to employ appreciably the same partial reactions, although there may be real differences in the means by which the initiation of peptide synthesis is accomplished. One would like to know the nature of the evolutionary pressure for the accretion of the extra proteins in eukaryotic ribosomes- whether there are functions of the particle still be to uncovered. It has not escaped attention that knowledge of the conserved features may be of help in understanding the function of both eukaryotic and prokaryotic ribosomes.

Keywords

Ribosomal Protein Cold Spring Harbor Affinity Column Eukaryotic Ribosome Ribosomal Subunit Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wool, I.G (1979), Ann. Rev. Biochem. 118, 719–754.Google Scholar
  2. 2.
    Wool, I.G. (1980), In Ribosomes: Structure3 Function and Genetics (Chamblis, G., Craven, G.R., Davies, J., Davis, K., Kahan, L., and Nomura, M., ed.) pp. 797–824 Univ. Park Press, Baltimore.Google Scholar
  3. 3.
    Petermann, M.L. (1964), In The Physical and Chemical Properties of Ribosomes3 Elsevier, New York.Google Scholar
  4. 4.
    Blair, D., Hill, W.E., and Wool, I.G., unpublished data.Google Scholar
  5. 5.
    Loening, U.E. (1968), J. Mol. Biol. 38, 355–365.PubMedGoogle Scholar
  6. 6.
    Weinberg, R.A., and Penman, S. (1970), J. Mol. Biol. 47, 169–178.PubMedGoogle Scholar
  7. 7.
    Sherton, C.C. and Wool, I.G. (1974), Mol. Gen. Genet. 135, 97–112.PubMedGoogle Scholar
  8. 8.
    Hamilton, M.G., Pavlovec, A., and Petermann, M.L. (1971), Bio-chemistry 10, 3424–3427.PubMedGoogle Scholar
  9. 9.
    Bielka, H., Weifie, H., Bottger, M., and Foster, W. (1968), Eur. J. Biochem. 5, 183–190.PubMedGoogle Scholar
  10. 10.
    Brownlee, G.G., Sanger, F., and Barrell, B.G, (1867), Nature, London, 215, 735–736.Google Scholar
  11. 11.
    Nazar, R.N., Sitz, T.O., and Busch, H. (1975), J. Biol. Chem. 250, 8591–8597PubMedGoogle Scholar
  12. 12.
    Cammarano, P., Pons, S., Romeo, A., Gauldieri, M., and Gualerzi, C. (1972), Biochim. Biophys. Acta 281, 571–596.Google Scholar
  13. 13.
    Cammarano, P., Romeo, A., Gentile, M., Felsani, A., and Gualerzi, C. (1972), Biochim. Biophys. Acta 281, 597–624.Google Scholar
  14. 14.
    Cammarano, P., Felsani, A., Gentile, M., Gualerzi, C., Romeo, A., and Wolf, G. (1972), Bioehim. Biophys. Acta 281, 625–642.Google Scholar
  15. 15.
    Nonomura, Y., Blobel, G., and Sabatini, D.D (1971), J. Mol. Biol. 60, 303–323.PubMedGoogle Scholar
  16. 16.
    Lake, J.A., Sabatini, D.D., and Nonomura, Y. (1970), In Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., ed.) pp. 543–557, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  17. 17.
    Emanuilov, I., Sabatini, D.D., Lake, J.A. and Freienstein,C. (1978), Proe. Nat. Acad. Sci. USA 75, 1389–1393.Google Scholar
  18. 18.
    Boublik, M., and Hellman, W. (1978), Proc. Nat. Acad. Sci. USA 75, 2829–2833.Google Scholar
  19. 19.
    Unvin, P.N.T., and Taddei, C. (1977), J. Mol. Biol. 114, 491–506.Google Scholar
  20. 20.
    Unwin, P.N.T. (1977), Nature., London, 269, 118–122.Google Scholar
  21. 21.
    Morimoto, T., Blobel, G., and Sabatini, D.D. (1972), J. Cell. Biol. 52, 338–354.PubMedGoogle Scholar
  22. 22.
    Morimoto, T., Blobel, G., and Sabatini, D.D. (1972), J. Cell. Biol. 52, 355–366.PubMedGoogle Scholar
  23. 23.
    Byers, B. (1967), J. Mol. Biol. 26, 155–167.PubMedGoogle Scholar
  24. 24.
    Hardy, S.J.S., Kurland, C.G., Voynow, P., and Mora, G. (1969), Biochemistry 8, 2897–2905.PubMedGoogle Scholar
  25. 25.
    Mora, G., Donner, D., Thammana, P., Lutter, L., and Kurland, C.G. (1971), Mol. Gen. Genet. 112, 229–242.PubMedGoogle Scholar
  26. 26.
    Hindennach, I., Stoffler, G. and Wittmann, H.G. (1971), Eur. J. Biochem. 23, 7–11.PubMedGoogle Scholar
  27. 27.
    Hindennach, I., Kaltschmidt, E., and Wittmann H.G. (1971), Eur. J. Biochem. 23, 12–16.PubMedGoogle Scholar
  28. 28.
    Lin, A., Collatz, E., and Wool, I.G. (1976), Mol. Gen. Genet. 155, 1–9Google Scholar
  29. 29.
    Collatz, E., Lin, A., Stoffler, G., Tsurugi, K., and Wool, I.G. (1976), J. Biol. Chem. 251, 1808–1816.PubMedGoogle Scholar
  30. 30.
    Collatz, E., Wool, I.G., Lin, A., and Stoffler, G. (1976), J. Biol. Chem. 251, 4666–4672.PubMedGoogle Scholar
  31. 31.
    Tsurugi, K., Collatz, E., Wool, I.G., and Lin, A. (1976), J. Biol. Chem. 251, 7940–7946.PubMedGoogle Scholar
  32. 32.
    Tsurugi, K., Collatz, E., Todokoro, K., and Wool, I.G. (1977), J. Biol. Chem. 252, 3961–3969.PubMedGoogle Scholar
  33. 33.
    Collatz, E., Ulbrich, N., Tsurugi, K., Lightfoot, H.N,, Mackinlay W., Lin, A., and Wool, I.G. (1977), J. Biol. Chem. 252, 9071–9080PubMedGoogle Scholar
  34. 33a.
    Tsurugi, K., Collatz, E., Todokoro, K., Ulbrich, N., Lightfoot, H.N., and Wool, I.G. (1978), J. Biol. Chem. 253, 946–955PubMedGoogle Scholar
  35. 34.
    Lin, A., Tanaka, T., and Wool, I.G. (1979), Biochemistry 18, 1634–1637.PubMedGoogle Scholar
  36. 35.
    Terao, K., and Ogata, K. (1972), Bioehim. Biophys. Acta 285, 473–482.Google Scholar
  37. 36.
    Westermann, P., and Bielka, H. (1973), Mol. Gen. Genet. 126, 349–356.PubMedGoogle Scholar
  38. 37.
    Goerl, M., Welfle, H., and Bielka, H. (1978), Bioehim. Biophys. Acta 519, 418–427.Google Scholar
  39. 38.
    Howard, G.A., Ramjoue, H.P.R., and Gordon, J. (1977), In Translation of Natural and Synthetic Polypeptides (Legocki, A.B., ed.) pp. 305–311, Univ. Argic., Poznan, Poland.Google Scholar
  40. 39.
    Higo, K., and Otaka, E. (1979), Biochemistry 18, 4191–4196.PubMedGoogle Scholar
  41. 4O.
    Itoh, T., Higo, K., and Otaka, E. (1979), Biochemistry 18, 5787–5793.PubMedGoogle Scholar
  42. 4l.
    Chooi, Y.W. (1980), Biochemistry 19, 3469–3476.PubMedGoogle Scholar
  43. 42.
    Ting Shih, C.Y., Toivonen, J.E. and Craven, G.R. (1979), Eur. J. Biochem. 97, 189–196.PubMedGoogle Scholar
  44. 43.
    Lin, A., and Wool, I.G. (1970), Mol. Gen. Genet. 134, 1–6.Google Scholar
  45. 44.
    Howard, G.A., Traugh, J.A., Croser, E.A., and Traut, R.R. (1975), J. Mol. Biol. 93, 391–404.PubMedGoogle Scholar
  46. 45.
    Terao, K., and Ogata, K. (1975), Biochim. Biophys. Acta 402, 214–229.Google Scholar
  47. 46.
    Martini, O.H.W., and Gould, H.J. (1975), Mol. Gen. Genet. 142, 317–331.Google Scholar
  48. 47.
    Issinger, O.G., and Beier, H. (1978), Mol. Gen. Genet. 160, 297–309.Google Scholar
  49. 48.
    Weifie, H., Goerl, M., and Bielka, H. (1978), Mol. Gen. Genet. 163, 101–112.Google Scholar
  50. 49.
    Sherton, C.C., and Wool, I.G. (1972), J. Biol. Chem. 247, 4460–4467.PubMedGoogle Scholar
  51. 50.
    Welfle, H., Stahl, J., and Bielka, H. (1971), Biochim. Biophys. Acta 243, 416–419.Google Scholar
  52. 51.
    Welfle, H., Stahl, J., and Bielka, H. (1972), FEBS Lett. 26, 228–232.PubMedGoogle Scholar
  53. 52.
    Delaunay, J., Creusot, F., and Shapira, G. (1973), Eur. J. Biochem. 39, 305–312.PubMedGoogle Scholar
  54. 53.
    Chatterjee, S.K., Kazemie, M., and Matthaei, H. (1973), Hoppe- Seylers Z. Physiol. Chem. 354, 481–486.Google Scholar
  55. 54.
    Lastick, S.M., and McConkey, E.H. (1976), J. Biol. Chem. 251, 2867–2875.PubMedGoogle Scholar
  56. 55.
    Blobel, G., and Sabatini, D.D. (1971), In Biomembvanes (Manson, L.A., ed.), vol. 29 pp. 193–196, Plenum Press, New York.Google Scholar
  57. 56.
    Sabatini, D.D., and Kreibich, G. (1976), In The Enzymes of Biological Membranes (Martinosi, A., ed.), vol. pp. 531–579, Plenum Press, New York.Google Scholar
  58. 57.
    Kreibich, G., Ulrich, B.L., and Sabatini, D.D. (1978), J. Cell. Biol. 71, 464–487.Google Scholar
  59. 58.
    Kreibich, G., Freienstein, C.M., Pereyra, B.N., Ulrich, B.L., and Sabatini, D.D. (1978), J. Cell. Biol. 21, 488–506.Google Scholar
  60. 59.
    Kreibich, G., Czako-Graham, M., Grebenau, R., Mok, W., Rodriguez-Boulan, E., and Sabatini, D.D. (1978), J. Supramol. Struct. 8, 279–302.PubMedGoogle Scholar
  61. 60.
    Kozak, M. (1978), Cell. 15, 1109-1123.PubMedGoogle Scholar
  62. 61.
    Kozak, M. (1979), J. Biol. Chem. 254, 4731–4738.PubMedGoogle Scholar
  63. 62.
    Kozak, M. (1979), Nature, London, 280, 82–85.Google Scholar
  64. 63.
    Trachsel, H., Erni, B., Schreier, M.H., and Staehelin, T. (1977), J. Mol. Biol. 116, 755–767.PubMedGoogle Scholar
  65. 64.
    Cundliffe, E., Dixon, P., Stark, M., Stoffler, G., Ehrlich, R., Stöffler-Meilicke, M., and Cannon, M., J. Mol. Biol., in press.Google Scholar
  66. 65.
    Wienen, B., Ehrlich, R., Stöffler-Meilicke, M., Smith, I., Weiss, D., Vince, R., and Pestka, S. (1979), J. Biol. Chem. 254, 8031–8041.PubMedGoogle Scholar
  67. 66.
    Pestka, S., Weiss, D., Vince, R., Wienen, B., Stoffler, G., and Smith, I., (1976), Mol. Gen. Genet, 144, 235–241.PubMedGoogle Scholar
  68. 67.
    Maaloe, O. (1969), Dev. Biol. 3, 33–58 (Suppl.).Google Scholar
  69. 68.
    Kjeldgaard, N.O., and Gausing, K. (1970) In Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., ed.) pp. 369–392, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  70. 69.
    Wittmann-Liebold, B., Geissler, A.W., Lin, A., and Wool, I.G. (1979), J. Supramol. Struct. 12, 425–433.PubMedGoogle Scholar
  71. 70.
    Reisner, A.H., personal communicationGoogle Scholar
  72. 71.
    Stoffler, G., Wool, I.G., Lin, A., and Rak, K.H. (1970), Proc. Nat. Acad. Sci. USA 71, 4723–4726.Google Scholar
  73. 72.
    Wool, I.G. and Stoffler, G. (1970), In Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., ed.) pp. 417–460, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  74. 73.
    Howard, G.A., Smith, R.L., and Gordon, J. (1976), J. Mol. Biol. 106, 623–637.PubMedGoogle Scholar
  75. 74.
    Van Agthoven, A.J., Maasen, J.A., and MBller, W. (1977), Biochem. Biophys. Res. Comm. 77, 989–998.Google Scholar
  76. 75.
    Tanaka, T., Wool, I.G., and Stoffler, G. (1980), J. Biol. Chem. 255, 3832–3834.PubMedGoogle Scholar
  77. 76.
    Itoh, T., and Wittmann-Liebold, B., in preparation.Google Scholar
  78. 77.
    Itoh, T., and Wittmann-Liebold, B. (1978), FEBS Lett. 96, 399–402PubMedGoogle Scholar
  79. 78.
    Fischer, N., Stoffler, G., and Wool, I.G. (1978), J. Biol. Chem. 253, 7355–7360.PubMedGoogle Scholar
  80. 79.
    Lin, A., Wittman-Liebold, B., and Wool, I.G., unpublished data.Google Scholar
  81. 80.
    Itoh, T., and Osawa, S., submitted.Google Scholar
  82. 81.
    Amons, R., Pluijms, W., and Moller, W. (1979), FEBS Lett. 1049 85–89.Google Scholar
  83. 82.
    Terhorst, C., MBller, W., Laursen, R., and Wittmann-Liebold, B. (1973), Eur. J. Biochem. 34, 138–152.PubMedGoogle Scholar
  84. 83.
    Oda, G., Strom, A.R., Visentin, L.P., and Yaguchi, M. (1970), FEBS Lett. 43, 127–130.Google Scholar
  85. 84.
    Dayhoff, M.O. (1976), In Atlas of Protein Sequence and Structure (Dayhoff, M.O., ed.) vol. (suppl. 2) pp. 6. National Research Foundation, Washington, D.C.Google Scholar
  86. 85.
    Ulbrich, N., and Wool, I.G. (1978), J. Biol. Chem. 253, 9049–9052PubMedGoogle Scholar
  87. 86.
    Burrell, H.R., and Horowitz, J. (1975), FEBS Lett. 49, 306–309.PubMedGoogle Scholar
  88. 87.
    Burrell, H.R., and Horowitz, J. (1977), Eur. J. Biochem. 75, 533–544.PubMedGoogle Scholar
  89. 88.
    Metspalu, A., Saarma, M., Villems, R., Ustav, M., and Lind, A. (1978), Eur. J. Biochem. 91, 73–81.PubMedGoogle Scholar
  90. 89.
    Home, J.R., and Erdmann, V.A. (1972), Mol. Gen. Genet. 119, 331–354.Google Scholar
  91. 90.
    Gray, P.N., Bellemare, G., Monier, R., Garrett, R.A., and Stoffler, G. (1973), J. Mol. Biol. 71, 133–152.Google Scholar
  92. 91.
    Yu, R.S.T., and Wittmann, H.G. (1973), Biochim. Biophys. Acta 324, 375–385.Google Scholar
  93. 92.
    Wrede, P., and Erdmann, V.A. (1977), Proc. Nat. Acad. Sci. USA 49 2706–2709.Google Scholar
  94. 93.
    Blobel, G. (1971), Proc. Nat.. Acad. Sci. USA 68, 1881–1885.Google Scholar
  95. 94.
    Lebleu, B., Marbaix, G., Huez, G., Temmerman, J., Burney, A., and Chantrenne, H. (1971), Eur. J. Biochem. 19, 261–269Google Scholar
  96. 95.
    Petermann, M.L., and Pavlovec, A. (1971)5 Biochemistry 10, 2770–2775.Google Scholar
  97. 96.
    Terao, K., Takahashi, Y., and Ogata, K. (1975), Biochim. Biophys. Acta 42, 230–237.Google Scholar
  98. 97.
    Newton, I., Rinke, J., and Brimacombe, R. (1975), FEBS Lett. 51, 215–218.PubMedGoogle Scholar
  99. 98.
    Traub, P., and Nomura, M. (1969), J. Mol. Biol. 109 391–413.Google Scholar
  100. 99.
    Ulbrich, N., Todokoro, K., Ackerman, E., and Wool, I.G. (1980), J. Biol. Chem., in press.Google Scholar
  101. 100.
    Spicer, E., Schwarzbauer, J., and Craven, G.R. (1977), Nuc. Acids Res. 4, 1491–1499.Google Scholar
  102. 101.
    Spierer, P., Bogdanov, A.A., and Zimmermann, R.A. (1978), Bio-chemistry 17, 5394–5398.Google Scholar
  103. 102.
    Schaup, H.W., Green, M., and Kurland, C.G. (1970), Mol. Gen. Genet. 109, 193–205.Google Scholar
  104. 103.
    Garrett, R.A., Rak, K.H., Daya, L., and Stöffler, G. (1971), Mol. Gen. Genet. 114, 112–121.Google Scholar
  105. 104.
    Ulbrich, N., Lin, A., and Wool, I.G. (1979), J. Biol. Chem. 254, 86141–86145.Google Scholar
  106. 105.
    Ulbrich, N., Wool, I.G., Ackerman, E.J., and Sigler, P.B. (1980), J. Biol. Chem. 155, 7010–7016.Google Scholar
  107. 106.
    Pace, N.R., Walker, T.A., and Schroeder, E. (1977), Biochemistry 16, 5321–5328.PubMedGoogle Scholar
  108. 107.
    Ulbrich, N., Lin, A., and Wool, I.G. (1979), J. Biol. Chem. 255, 797–801.Google Scholar
  109. 108.
    Erdmann, V.A., personal communication.Google Scholar
  110. 109.
    Cedergren, R.J., and Sankoff, D. (1976), Nature, London, 260, 71–75.Google Scholar
  111. 110.
    Todokoro, K., Ulbrich, N., and Wool, I.G., unpublished data.Google Scholar
  112. 111.
    Villems, R., Saarma, M., Metspalu, A., and Toots, I. (1979), FEBS Lett. 107, 66–68.PubMedGoogle Scholar
  113. 112.
    Ulbrich, N., and Wool, I.G., unpublished data.Google Scholar
  114. 113.
    Erdmann, V.A. (1976), In Progress in Nucleic Acid Research and Molecular Biology (Cohn, E.W., ed.) vol. 18, pp. 15–90, Academic Press, New York.Google Scholar
  115. 114.
    Erdmann, V.A. (1978), Nucleic Acids Res; r1–r11.Google Scholar
  116. 115.
    Erdmann, V.A. (1979), Nucleic Acids Res. 6, r29–r44.PubMedGoogle Scholar
  117. 116.
    Ofengand, J., and Henes, C. (1969), J. Biol. Chem. 244, 62141–6253Google Scholar
  118. 117.
    Schwarz, U., Menzel, H.M., and Gassen, H.G. (1976), Biochemistry 15, 21481–21490.Google Scholar
  119. 118.
    Richter, D., Erdmann, V.A., and Sprinzl, M. (1973), Nature New Biol. 216, 132–135.Google Scholar
  120. 119.
    Erdmann, V.A., Sprinzl, M., Richter, D., and Lorenz, S. (1971), Acta Biol. Med. Germ. 33, 605–608.Google Scholar
  121. 120.
    Grummt, F., Grummt, I., Gross, H.J., Sprinzl, M., Richter, D., and Erdmann, V.A. (1970), FEBS Lett. 42, 15–17.Google Scholar
  122. 121.
    Chan, Y.L., Ulbrich, N., Wool, I.G., Ackerman, E.J., and Sigler, P.B., unpublished data.Google Scholar
  123. 122.
    Ulbrich, N., Lin, A., and Wool, I.G. (1980), J. Biol. Chem. 255, 797–801.PubMedGoogle Scholar
  124. 123.
    Lind, A., Metspalu, A., Saarma, M., Toots, I., Ustav, M., and Villems, R. (1977), Bioorg. Chem. (USSR) 3, 1138–1140.Google Scholar
  125. 124.
    Hori, H. (1976), Mol. Gen.. Geret, 145, 119–123.Google Scholar
  126. 125.
    Luoma, G.A., and Marshall, A. G. (1978), Proc. Nat. Acad. Sci. USA 75, 4901–4905.Google Scholar
  127. 126.
    Cantor, C.R., Pellegrini, M., and Oen, H. (1970) 3 In Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., ed.) pp. 573–585, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  128. 127.
    Stöffler, G. (1970), In Ribosomes (Nomura, M., Tissieres, A., and Lengyel, P., ed.) pp. 615–6675 Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  129. 129.
    Wurmbach, P., and Nierhaus, K.H. (1979), Proc. Nat. Acad. Sci. USA 76, 2143–2147.Google Scholar
  130. 130.
    Lührmann, R., Eckhardt, H., and Stöffler, G. (1979), Nature, London, 280, 423–425.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ira G. Wool
    • 1
  1. 1.The Department of BiochemistryUniversity of ChicagoChicagoUSA

Personalised recommendations