Advertisement

Mutagenicity and Carcinogenicity of a Recently Characterized Carbon Black Adsorbate: Cyclopenta(Cd) Pyrene

  • Avram Gold
  • Eric Eisenstadt
  • Stephen Nesnow
  • Martha M. Moore
  • Helen Garland
  • Gaynelle Curtis
  • Barry Howard
  • Deloris Graham
Part of the Environmental Science Research book series (ESRH, volume 22)

Abstract

Polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants that may be metabolically activated to mutagenic or carcinogenic derivatives (Particulate Polycyclic Organic Matter, 1972; Gelboin and Ts’o, 1978). Intensive research indicates that PAH are promutagens or procarcinogens containing the bay region geometric feature (Jerina et al., 1978). Studies show that the biological activity of these compounds results from metabolism to bay region diol-epoxides, which are capable of forming covalent adducts at nucleophilic sites within DNA.

Keywords

Polycyclic Aromatic Hydrocarbon High Performance Liquid Chromatography Thymidine Kinase Polycyclic Hydrocarbon Transformation Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods of detecting carcinogens and mutagens with the Salmonella/ mammalian-microsome mutagenicity test. Mutation Res. 31: 347–364.CrossRefGoogle Scholar
  2. Bruice, P.Y., T.C. Bruice, P.M. Dansette, H.G. Selander, H. Yagi, and D.M. Jerina. 1976. Comparison of the mechanisms of solvolysis and rearrangement of K-region vs. non-K-region arene oxides of phenanthrene.; comparison solvolytic rate constants of K-region and non-K-region arene oxides. J. Am. Chem. Soc. 98: 2965–2973.CrossRefGoogle Scholar
  3. Clive, D., K.O. Johnson, J.F.S. Spector, A.G. Batson, and M.M.M. Brown. 1979. Validation and characterization of the L5178/TK+/- mouse lymphoma mutagen assay system. Mutation Res. 59: 61–108.CrossRefGoogle Scholar
  4. Clive, D., and J.F.S. Spector. 1975. Laboratory procedures for assessing specific locus mutations at the TK locus in cultures L5178Y mouse lymphoma cells. Mutation Res. 31: 17–29.CrossRefGoogle Scholar
  5. Eisenstadt, E., and A. Gold. 1978. Cyclopenta(cd)pyrene: a highly mutagenic polycyclic aromatic hydrocarbon. Proc. Nat. Acad. Sci. USA 75: 1667–1669.ADSCrossRefGoogle Scholar
  6. Gehly, E.B., W.E. Fahl, C.R. Jefcoate, and C. Heidelberger. 1979. The metabolism of benzo(a)pyrene by cytochrome P450 in transformable and non-transformable C3H mouse fibroblasts. J. Biol. Chem. 254: 5041–5048.Google Scholar
  7. Gelboin, H.V., and P.O.P. Ts’o, eds. Polycyclic Hydrocarbons and Cancer, Vols. 1 and 2. Academic Press: New York.Google Scholar
  8. Gold, A. 1975. Carbon black adsorbate: separation and identification of a carcinogen and some oxygenated polyaromatics. Anal. Chem. 47: 1469–1472.MathSciNetCrossRefGoogle Scholar
  9. Gold, A., J. Brewster, and E. Eisenstadt. 1979. Synthesis of cyclopenta(cd)pyrene-3,4-epoxide, the ultimate mutagenic metabolite of the environmental carcinogen cyclopenta(cd)pyrene. J. Chem. Soc. Chem. Commun. 903–904.Google Scholar
  10. Gold, A., J. Schultz, and E. Eisenstadt. 1978. Relative reactivities of pyrene ring positions: cyclopenta(cd)pyrene via an intramolecular Friedel-Crafts acylation. Tetrahedron Lett. 4491–4494.Google Scholar
  11. Gold, A., J. Schultz, and E. Eisenstadt. 1979. Synthesis and metabolism of cyclopenta(cd)pyrene. In: Polynuclear Aromatic Hydrocarbons. P.W. Jones and P. Leber, eds. Ann Arbor Science: Ann Arbor, MI. pp. 695–704.Google Scholar
  12. Grimmer, G. 1977. ‘ARC monographs on the evaluation of carcinogenic risk of chemicals to man, Vol. 16. International Agency for Research on Cancer, Lyon, France. p. 29.Google Scholar
  13. Ittah, Y., and D.M. Jerina. 1978. Synthesis of cyclopenta(cd)pyrene. Tetrahedron Lett. 4495–4498.Google Scholar
  14. Jerina, D.M., H. Yagi, R.E. Lehr, D.R. Thakker, M. Schaeffer-Ridder, J.M. Karle, W. Levin, A.W. Wood, R.L. Chang, and A.H. Conney. 1978. Bay region theory of carcinogenesis by polycyclic aromatic hydrocarbons. In: Polycyclic Hydrocarbons and Cancer, Vol. 1. H.V. Gelboin and P.O.P. Ts’o, eds. Academic Press: New York. pp. 173–188.Google Scholar
  15. Kaden, D.A., R.A. Hites, and W.G. Thilly. 1979. Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium. Cancer Res. 39: 4152–4159.Google Scholar
  16. Keller, J.W., and C. Heidelberger. 1976. Polycyclic K-region arene oxides; products and kinetics of solvolysis. J. Am. Chem. Soc. 98: 2328–2336.CrossRefGoogle Scholar
  17. Konieczny, M., and R.G. Harvey. 1979. Synthesis of cyclopenta(cd)pyrene. J. Org. Chem. 44: 2158–2160.CrossRefGoogle Scholar
  18. Lee, M.L., P.G. Prado, J.B. Howard, and R.A. Rites. 1977. Source identification of urban airborne polycyclic aromatic hydrocarbons by gas chromatographic mass spectrometry and high resolution mass spectrometry. Biomed. Mass Spectrum. 4: 182–186.CrossRefGoogle Scholar
  19. Maher, V.M., and J.M. McCormick. 1978. Mammalian cell mutagenesis by polycyclic aromatic hydrocarbons and their derivatives. In: Polycyclic Hydrocarbons and Cancer, Vol. 2. H.V. Gelboin and P.O.P. Ts’o, eds. Academic Press: New York. pp. 137–160.Google Scholar
  20. Nesnow, S., and C. Heidelberger. 1976. The effect of modifiers of microsomal enzymes on chemical oncogenesis in cultures of C3H mouse cell lines. Cancer Res. 36: 1801–1080.Google Scholar
  21. Particulate Polycyclic Organic Matter. 1972. National Academy of Sciences: Washington, DC.Google Scholar
  22. Reznikoff, C.A., J.S. Bertram, D.W. Brankow, and C. Heidelberger. 1973. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res. 33: 3239–3249.Google Scholar
  23. Rosen, A.A., and F.M. Middleton. 1955. Identification of petroleum refinery wastes in surface waters. Anal. Chem. 27: 790–794.CrossRefGoogle Scholar
  24. Ruehle, P.H., D.L. Fischer, and J.C. Wiley. 1979. Synthesis of cyclopenta(cd)pyrene, a ubiquitous environmental carcinogen. J. Chem. Soc. Chem. Commun. 302–303.Google Scholar
  25. Snook, M.E., R.E. Severson, R.F. Arrendale, H.C. Highman, and O.T. Chortyk. 1977. The identification of high molecular weight polynuclear aromatic hydrocarbons in a biologically active fraction of cigarette smoke condensate. Beitrage zur Tabakforsch. 9: 97–101.Google Scholar
  26. Wallcave, L., D.L. Nagel, J.W. Smith, and R.D. Waniska. 1975. Two pyrene derivatives of widespread environmental distribution: cyclopenta(cd)pyrene and acepyrene. Environ. Sci. Technol. 9: 143–145.CrossRefGoogle Scholar
  27. Wood, A.N., W. Levin, R.L. Chang, M. Huang, D.E. Ryan, P.E. Thomas, R.E. Lehy, S. Kumer, M. Koreeda, H. Akagi, Y. Ittah, P.M. Dansette, H. Yagi, D.M. Jerina, and A.H. Conney. 1980. Mutagenicity and tumor-initiating activity of cyclopenta(cd)pyrene and structurally related compounds. Cancer Res. 40: 642–649.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Avram Gold
    • 1
  • Eric Eisenstadt
    • 2
  • Stephen Nesnow
    • 3
  • Martha M. Moore
    • 3
  • Helen Garland
    • 3
  • Gaynelle Curtis
    • 3
  • Barry Howard
    • 3
  • Deloris Graham
    • 3
  1. 1.Department of Environmental Sciences EngineeringUniversity of North CarolinaChapel HillUSA
  2. 2.School of Public HealthHarvard UniversityBostonUSA
  3. 3.Health Effects Research LaboratoryU.S. Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations