What do we Know from Light-Experiments About the Principle of Relativity and the Light-Principle?

  • J. Pfarr


Many derivations of the Lorentz-transformation are known in the literature, and in most of these analyses the basic invariance property is that the speed of light in inertial frames is independent of the motion of the source (PCL). The second set of invariances is governed by the Principle of Relativity (RP) saying that inertial frames cannot be distinguished from each other by internal processes and measurements1). The validity of these two principles reduces the degrees of freedom for the transformation between Cartesian coordinate systems of different inertial frames; detailed analysis uniquely leads to the Lorentz-transformation.


Optical Path Inertial Frame Clock Synchronization Local Clock Light Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berzi, V. and V. Gorini, J. Math. Phys. 10 (1969) 1518.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Einstein, A. (1905), Ann. d. Phys. 17 (1905) 891.ADSMATHCrossRefGoogle Scholar
  3. Franck, Ph. und H. Rothe, Ann. Phys. 34 (1911) 825.CrossRefGoogle Scholar
  4. Franck, Ph. und H. Rothe, Phys. Zeitschr. 13 (1912) 750.Google Scholar
  5. Grünbaum, A., Philosophical Problems of Space and Time, 2nd ed., D. Reidel Publ. Co., Dordrecht-Holland 1973.CrossRefGoogle Scholar
  6. Ignatovski, W. v., Arch. Math. Phys. 17 (1910) 1(a).Google Scholar
  7. Ignatovski, W. v., Arch. Math. Phys. 18 (1911) 17(a).Google Scholar
  8. Ignatovski, W. v., Phys. Zeitschr. 11 (1910) 972(b).Google Scholar
  9. Ignatovski, W. v., 12 (1911) 779(b).Google Scholar
  10. Ives, H.E. and G.R. Stilwell, J. Opt. Soc. Am. 28 (1938) 215.ADSCrossRefGoogle Scholar
  11. Ives, H.E. and G.R. Stilwell, J. Opt. Soc. Am. 31 (1941) 369.ADSCrossRefGoogle Scholar
  12. Kennedy, R.J. and E.M. Thorndike, Phys. Rev. 42 (1932) 400.ADSMATHCrossRefGoogle Scholar
  13. Mansouri, R. und R.U. Sexl, GRG 8 (1977) 497, 515, 809.Google Scholar
  14. Levy-Leblond, J.-M., Am. J. Phys. 44 (1976) 271.ADSCrossRefGoogle Scholar
  15. Michelson, A.A. and E.W. Morley, Am. J. Sci. 34 (1887) 333;.Google Scholar
  16. Michelson, A.A. and E.W. Morley, Phil. Mag. 24 (1887) 449.Google Scholar
  17. Mittelstaedt, P., Der Zeitbegriff in der Physik, Bibliographisches Institut, Mannheim, 2nd ed. 1980.Google Scholar
  18. Panofsky, W.K.H. and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, Reading Mass. 1962.MATHGoogle Scholar
  19. Pfarr, J., Zeitschr. f. all. Wissenschaftstheorie 7 (1976) 298.CrossRefGoogle Scholar
  20. Pfarr, J., Zur Interpretation des Michelson-Versuchs, in J. Nitsch, J. Pfarr und E.-W. Stachow (eds.), Grundlagenprobleme der modernen Physik, Bibliographisches Institut, Mannheim, (1981).Google Scholar
  21. Reichenbach, H., The Philosophy of Space and Time, Dover Publications, New York 1957.Google Scholar
  22. Robertson, H.P., Rev. Mod. Phys. 21 (1949) 378.ADSMATHCrossRefGoogle Scholar
  23. Robertson, H.P. and T.W. Noonan, Relativity and Cosmology, Saunders, Philadelphia 1968.MATHGoogle Scholar
  24. Süßmann, G., Z. Naturforsch. 24 a (1969), 495.MATHGoogle Scholar
  25. Terletzkii, Y.P., Paradoxes in the Theory of Relativity, Plenum Press, New York 1968.Google Scholar
  26. Tomaschek, R., Ann. Physik 73 (1924) 105.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. Pfarr
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKöln 41Federal Republic of Germany

Personalised recommendations