Advertisement

Mystical Realism

A de-Sneedified Program of Formalization and an Exercise in Einsteinian Methodology
  • R. M. Cooke

Abstract

Two things strike me in contemporary discussions about theoreticity. First, in those studies of individual theories known to me, the number of theoretical terms is the same, namely two [14, 16]. Second, in all the abstract treatments of theoreticity, the theoretical terms are indexed from r to n (r < n). Are there always only two theoretical terms? If not, what happens when the theoretical vocabulary gets largs, is it simply a matter of letting an index run up to n? I think the answer to both questions is “no”.

Keywords

Massive Point Regular Theory Theoretical Term Semantic Interpretation Informal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carnap, R. “Testability and Meaning” Philosophy of Science vol. 3 no. 4 (1936).Google Scholar
  2. 2.
    Cooke, R. “The Objective Content of Classical Particle Mechanics” Filosofische Reeks nr. 4 Universiteit van Amsterdam (1977).Google Scholar
  3. 3.
    Cooke, R. “Realism and Content” Kennis en Methode, jaargang 2, nr. 4, 319-341.Google Scholar
  4. 4.
    Enderton, Herbert B. A Mathematical Introduction to Logic, Academic Press New York (1972).MATHGoogle Scholar
  5. 5.
    Einstein, A. The World as I See It, London (1941).Google Scholar
  6. 6.
    Ibid, “Autobiographical Notes” in Albert Einstein, Philosopher Scientist P.A. Schilpp (editor) New York (1951).Google Scholar
  7. 7.
    Hempel, C. “Inductive Inconsistencies” in Aspect of Scientific Explanation The Free Press (1951).Google Scholar
  8. 8.
    Hertz, Heinrich, The Principles of Mechanics Presented in a New Form New York 1956.Google Scholar
  9. 9.
    Kamlah, Andreas “An Improved Definition of ‘Theoretical in a Given Theory’” Erkenntnis 10 349–359 (1975).Google Scholar
  10. 10.
    Kreyszig, Erwin, Introduction to Differential Geometry and Riemann Geometry U. of Toronto Press (1968).Google Scholar
  11. 11.
    Mach, Ernst. The Science of Mechanics, La Salle I11, (1960).Google Scholar
  12. 12.
    McKinsey, J.C.C., Sugar, A.C. and Suppes, P. “Axiomatic Foundattions of Classical Particle Mechanics” J. of Rational Mechanics and Analysis vol. 2 nr. 22, 253-272.Google Scholar
  13. 13.
    Montague, Richard, “Deterministic Theories” in Decisions, Values and Groups, Washburn (editor), Permagon Press, 325-370 (1957).Google Scholar
  14. 14.
    Moulines, C. Ulises, “A Logical Reconstruction of Simple Equilibrium Thermodynamics” Erkenntnis 9 101–130 (1975).CrossRefGoogle Scholar
  15. 15.
    Przelecki, Marian, “A Set Theoretic Versus a Model Theoretic Approach to the Logical Structure of Physical Theories” Studia Logika 33 1 (1974).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sneed, J.D. The Logical Structure of Mathematical Physics, Dordrecht (1971).Google Scholar
  17. 17.
    Stegmüller, W. Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie, Band II, Theorie und Erfahrung; Zweiter Halbband, Theorien Strukturen und Theoriendynamik, Springer-Verlag, Berlin, (1973).Google Scholar
  18. 18.
    Trautman, A. “Foundations and Current Problems of General Relativity” in S. Deser and K. Ford (editors) Lecture on General Relativity, Prentice-Hall (1965).Google Scholar
  19. 19.
    Van Fraassen, B. Introduction to the Philosophy of Space and Time, Random House (1970).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. M. Cooke
    • 1
  1. 1.Technische Hogeschool DelftGB DelftNetherlands

Personalised recommendations