A General Scheme for Intertheoretic Approximation

  • C. U. Moulines


This essay has a twofold purpose: first, to show that it is possible to introduce, in a natural way, a general structural concept of approximation between conceptually different theories; second, to show its viability by testing it against a particular example of an intertheoretic relationship, namely, the relationship between Kepler’s laws and Newton’s theory of gravitation. It is formally shown that this particular case fits into the general frame for approximation developed in the first part of the essay.


Intended Application Empirical Theory Reductive Approximation Rigid Body Mechanic Approximative Reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.W.: 1959, ‘The Foundations of Rigid Body Mechanics and the Derivation of Its Laws from Those of Particle Mechanics”, in The Axiomatic Method (ed. by L. Henkin, P. Suppes, A. Tarski). North-Holland, Amsterdam, 1959.Google Scholar
  2. Balzer, W. and J.D. Sneed: 1977, ‘Generalized Net Structures of Empirical Theories. Part I’ Studia Logica 36 (1977), pp. 195–211.MathSciNetMATHCrossRefGoogle Scholar
  3. Bourbaki, N.: 1953, Topologie generale, Paris, 1951.Google Scholar
  4. Kuhn, T. S.: 1976, ‘Theory-Change as Structure-Change: Comments on the Sneed Formalism’, Erkenntnis, 10 (1976), pp. 179–200.CrossRefGoogle Scholar
  5. Ludwig, G.: 1978, Grundstrukturen einer physikalischen Theorie, Springer-Verlag, Berlin-Heidelberg, 1978.MATHGoogle Scholar
  6. Mayr, D.: 1980, ‘Investigations of the Concept of Reduction, Part II’, to appear.Google Scholar
  7. Moulines, C.U.: 1976a, ‘Approximate Application of Empirical Theories: A General Explication’, Erkenntnis 10, (1976), pp. 201–227.CrossRefGoogle Scholar
  8. Moulines, C.U.: 1976b, ‘Un concepto estructural de aproximación empirica’, Critica 24 (1976), pp. 25–51.Google Scholar
  9. Moulines, C.U.: 1980, ‘Intertheoretic Approximation: The Kepler-Newton Case’, Synthese 45 (1980), pp. 387–412.MathSciNetMATHCrossRefGoogle Scholar
  10. Scheibe, E.: 1973, ‘Die Erklärung der Keplerschen Gesetze durch Newtons Gravitationsgesetz’, in Einheit und Vielheit. Festschrift für Carl Friedrich von Weizsäcker (ed. by E. Scheibe and G. Süssmann), Göttingen, 1973, pp. 98-118.Google Scholar
  11. Scheibe, E.: 1976, ‘Conditions of Progress and the Comparability of Theories’, in Essays in Memory of Imre Lakatos (ed. by R.S. Cohen et al.). D. Reidel, Dordrecht, 1976, p. 547–568.CrossRefGoogle Scholar
  12. Scheibe, E.: 1979, ‘Eine Fallstudie zur Grenzfallbeziehung in der Quantenmechanik’, Unpublished manuscript, 1979.Google Scholar
  13. Sneed, J.D.: 1971, The Logical Structure of Mathematical Physics, D. Reidel, Dordrecht, 1971, 2nd edition, 1979.CrossRefGoogle Scholar
  14. Stegmüller, W.: 1973, Theorienstrukturen und Theoriendynamik, Springer-Verlag, Berlin-Heidelberg, 1973, (translated into English as The Structure and Dynamics of Theories. Springer-Verlag, New York 1976).MATHGoogle Scholar
  15. Stegmüller, W.: 1979, The Structuralistic View of Theories, New York, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • C. U. Moulines
    • 1
  1. 1.Instituto de Investigaciones FilosóficasCiudad UniversitariaMexico 20 D. F.

Personalised recommendations