Skip to main content

Numerical Computation of Nonlinear Waves

  • Chapter
Nonlinear Phenomena in Physics and Biology

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 75))

Abstract

Equations that can be described as wave equations arise in a large number of physical situations. Most often, they take a form which includes partial derivatives. In contrast to the case of ordinary differential equations, it tends to be true that each equation involving partial derivatives requires a special solution technique. There are of course some very general approaches, like finite differences, finite elements, spectral decomposition etc. but there are likely to be lots of details that differ from case to case. Program packets which more or less automatically handle a wide range of different problems have so far had little or no impact on wave calculations and I do not think any major changes in that respect are in sight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., and Inoue, O., 1980, Fourier expansion solution of the Korteweg-de Vries equation, J. Comp. Phys., 34: 202.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bauer, F., Garabedian, P., Korn, D., and Jameson, A., 1975, “Supercritical Wing Sections II,” Springer-Verlag.

    Google Scholar 

  • Benjamin, T.B., 1967, Instability of periodic wavetrains in nonlinear dispersive systems, Proc. Roy. Soc. A, 299: 59.

    Article  ADS  Google Scholar 

  • Chakravarthy, S., and Anderson, D., 1979, Numerical conformal mapping, Math. Comp., 33: 953.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, B., and Saffman, P.G., 1980, Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math., 62: 1.

    MathSciNet  MATH  Google Scholar 

  • Eilbeck, J.C., 1978, Numerical studies of solitons, in: “Proc. Symposium on Nonlinear (Soliton) Structure and Dynamics in Condensed Matter, Oxford 1978,” A.R. Bishop and T. Schneider, ed., Springer-Verlag.

    Google Scholar 

  • Fornberg, B., 1973, On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation, Math. Comp., 27: 45.

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg, B., 1975, On a Fourier method for the integration of hyperbolic equations, SIAM J. Numer. Anal., 12: 509.

    Google Scholar 

  • Fornberg, B., 1980, A numerical method for conformal mappings, SIAM J. Sei, and Stat. Comput., 1: 386.

    Google Scholar 

  • Fornberg, B., and Whitham, G.B., 1978, A numerical and theoretical study of certain nonlinear wave phenomena, Phil. Trans. Roy. Soc. London A, 289: 373.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gazdag, J., 1973, Numerical convective schemes based on accurate computation of space derivatives, J. Comp. Phys., 13: 100.

    Article  ADS  MATH  Google Scholar 

  • Greig, I.S., and Morris, L.L., 1976, A hopscotch method for the Korteweg-de Vries equation, J. Comp. Phys., 20: 64.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gustafsson, B., Kreiss, H.O., and Sundström, A., 1972, Stability theory of difference approximations for mixed initial boundary value problems, II, Math. Comp., 26: 649.

    Article  MathSciNet  MATH  Google Scholar 

  • Gutknecht, M.H., 1979, Solving Theodorsen’s integral equation for conformal maps with the fast Fourier transform. Part I. Theory. Research report 79 - 02, Seminar für angewandte Mathematik, Eidgenössische Technische Hochschule, Zürich.

    Google Scholar 

  • Gutknecht, M.H., 1979, Solving Theodorsen integral equation for conformal maps with the fast Fourier transform. Part II. Practice. Research report 79 - 04, Seminar für angewandte Mathematik, Eidgenössische Technische Hochschule, Zürich.

    Google Scholar 

  • Hasselmann, D., 1979, The high wavenumber instabilities of a Stokes wave, J. Fluid Mech., 93: 491.

    Article  ADS  MATH  Google Scholar 

  • Hayes, J.K., Kahaner, D.K., and Kellner, R., 1972, An improved method for numerical conformal mapping, Math. Comp, 26: 327.

    Article  MathSciNet  MATH  Google Scholar 

  • Henrici, P., 1979, Fast Fourier methods in computational complex analysis, SIAM Review, 21: 481.

    Article  MathSciNet  MATH  Google Scholar 

  • Keller, H.B., 1977, Numerical solutions of bifurcation and nonlinear eigenvalue problems, in: “Applications of Bifurcation Theory,” Academic Press, New York.

    Google Scholar 

  • Levi-Civita, T., 1925, Determination rigoureuse des ondes permanentes d’ampleur finie, Math. Ann., 93: 264.

    Article  MathSciNet  MATH  Google Scholar 

  • Lichtenstein, editor, 1925/28, “Jahrbuch liber die Fortschritte der Mathematak 1921-1922,” Walter de Gruyter & Co.

    Google Scholar 

  • Longuet-Higgins, M.S., 1978, The instabilities of gravity waves of finite amplitude in deep water, Proc. Roy. Soc. London A, 360: 471.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., and Cokelet, E.D., 1976, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. London A, 350: 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., and Cokelet, E.D., 1978, The deformation of steep surface waves on water. II. Growth of normal-mode instabilities, Proc. Roy. Soc. London A, 364: 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., and Fox, M.J.H., 1978, Theory of the almost-highest wave. Part 2. Matching and analytic extension, J. Fluid Mech., 85: 769.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Michell, J.H., 1893, The highest waves in water, Phil. Mag., 36: 430.

    MATH  Google Scholar 

  • Milne-Thompson, L.M., 1960, “Theoretical Hydrodynamics,” 4th ed., MacMillan, New York.

    Google Scholar 

  • Nekrasov, A.I., 1921, On stationary waves (In Russian), Izv Ivanovo-Vosnosonk. Politehn Inst., 3: 52.

    Google Scholar 

  • Nekrasov, A.I., 1922, On stationary waves. Part 2. On nonlinear integral equations (In Russian), Izv Ivanovo-Vosnosonk. Politehn Inst., 6: 155.

    Google Scholar 

  • Saffman, P.G., and Yuen, H.C., 1980a, Bifurcation and symmetry breaking in nonlinear dispersive waves, Phys. Rev. Lett., 44: 1097.

    Article  ADS  Google Scholar 

  • Saffman, P.G., and Yuen, H.C., 1980b, A new type of three- dimensional deep water gravity wave of permanent form, J. Fluid Mech., 101: 797.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schwartz, L.W., 1974, Computer extensions and analytic continuation of Stokes1 expansion for gravity waves, J. Fluid Mech., 62: 553.

    Article  ADS  MATH  Google Scholar 

  • Stokes, G.G., 1880, Considerations relative to the greatest height of oscillatory waves which can be propagated without change of form, in: “Math, and Phys. Papers,” Cambridge Univ. Press 1.

    Google Scholar 

  • Stokes, G.G., 1880, Supplement to a paper on the theory of oscillatory waves, in: “Math, and Phys. Papers,” Cambridge Univ. Press 1.

    Google Scholar 

  • Struik, D.J., 1926, Determination rigoureuse des ondes irrotationelles périodiques dans un canal a profondeur finie, Math. Ann., 95: 595.

    Article  MathSciNet  MATH  Google Scholar 

  • Symm, G.T., 1966, An integral equation method in conformai mapping, Numer. Math., 9: 250.

    Article  MathSciNet  MATH  Google Scholar 

  • Tappert, F., 1974, Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method, in: “Lectures in Appl. Math., Amer. Math. Soc. 15.”

    Google Scholar 

  • Toland, J.F., 1978, On the existence of a wave of greatest height and Stoke?s conjecture, Proc. Roy. Soc. London A, 363: 469.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vliegenthart, A.C., 1971, On finite-difference methods for the Korteweg-de Vries equation, J. Eng. Math., 5: 137.

    Article  MathSciNet  MATH  Google Scholar 

  • Winther, R.W., to appear, A conservative finite element method for the Korteweg-de Vries equation.

    Google Scholar 

  • Zabusky, N.J., 1968, Solitons and bound states of the time-dependent Schrodinger equation, Phys. Rev., 168: 124.

    Article  ADS  Google Scholar 

  • Zabusky, N.J., and Kruskal, M.D., 1965, Interactions of 1solitons* in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15: 240.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Fornberg, B. (1981). Numerical Computation of Nonlinear Waves. In: Enns, R.H., Jones, B.L., Miura, R.M., Rangnekar, S.S. (eds) Nonlinear Phenomena in Physics and Biology. NATO Advanced Study Institutes Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4106-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4106-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4108-6

  • Online ISBN: 978-1-4684-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics