Introduction to Nonlinear Waves

  • Alwyn C. Scott
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 75)


A funny thing happened to solitary wave research over the past decade: it became respectable. No longer is it possible for all soliton buffs to meet in a small room; nor can one now read the important papers in a few weeks. The early, innocent days are gone, and (as Fig. 1 shows) soliton research output has entered a period of exponential growth with a doubling time of about 18 months. The solitary wave concept has emerged as a widely accepted paradigm for exploring and modeling the dynamics of the real world.


Solitary Wave Nonlinear Wave Travel Wave Solution Nonlinear Wave Equation Solitary Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., 1973, Method for solving the sine-Gordon equation, Phys. Rev. Lett., 30: 1262.MathSciNetADSCrossRefGoogle Scholar
  2. Ann. N.Y. Acad. Sei., 1974, (Annual Meeting of the New York Academy of Sciences, 1974 ).Google Scholar
  3. Barbashov, B.M., and Chernikov, N.A., 1967, Solution of the two plane wave scattering problem in a nonlinear scalar field theory of the Born-Infeld type, Sov. Phys. JETP, 24: 437.ADSGoogle Scholar
  4. Barone, A., Esposito, F., Magee, C.J., and Scott, A.C., 1971, Theory and applications of the sine-Gordon equation, Riv. Nuovo Cimento, 1: 227.CrossRefGoogle Scholar
  5. Barut, A.O., 1978, “Nonlinear Evolution Equations in Physics and Mathematics,” Reidel.Google Scholar
  6. Benney, D.J., and Newell, A.C., 1967, The propagation of nonlinear wave envelopes, J. Math, and Phys., 46: 133.MathSciNetMATHGoogle Scholar
  7. Bespalov, V.I., and Talanov, V.I., 1966, Filamentary structure of light beams in nonlinear liquids, JETP Lett., 3: 307.ADSGoogle Scholar
  8. Bishop, A.R., and Schneider, T., 1979, “Solitons and Condensed Matter Physics,” Springer, Berlin.Google Scholar
  9. Born, M., 1934, On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A, 143: 410.ADSMATHCrossRefGoogle Scholar
  10. Born, M., and Infeld, L., 1934a, Foundations of the new field theory, Proc. Roy. Soc. A, 144: 425.ADSCrossRefGoogle Scholar
  11. Born, M., and Infeld, L., 1934b, Quantization of the new field equations. Part I, Proc. Roy. Soc. A, 147: 522.ADSCrossRefGoogle Scholar
  12. Born, M., and Infeld, L., 1935, Quantization of the new field theory. Part II, Proc. Roy. Soc. A, 150: 141.ADSCrossRefGoogle Scholar
  13. Calogero, F., 1978, “Nonlinear Evolution Equations Solvable by the Spectral Transform,” Pitman, London.MATHGoogle Scholar
  14. Caudrey, P.J., and Bullough, R.K., to appear, “Solitons,” Springer, Berlin.Google Scholar
  15. Chu, F.Y.F., and Scott, A.C., 1974, Backlund transformations and the inverse method, Phys. Lett, A 47: 303.MathSciNetADSCrossRefGoogle Scholar
  16. Dashen, R.F., Hasslacher, B., and Neveu, A., 1974, Nonperturbative methods and extended-hadron models in field theory. I. Semi- classical functional methods, Phys. Rev., D 10: 4114.ADSCrossRefGoogle Scholar
  17. Dashen, R.F., Hasslacher, B., and Neveu, A., 1975, Particle spectrum in model field theories from semiclassical functional integral techniques, Phys. Rev., D 11: 3424.MathSciNetADSCrossRefGoogle Scholar
  18. Davydov, A.S., and Kislukha, N.I., 1976, Solitons in one-dimensional molecular chains, Phys. Stat. Sol, (b), 75: 735.ADSCrossRefGoogle Scholar
  19. Davydov, A.S., 1977, Solitons as energy carriers in biological systems, Stud. Biophys., 62: 1.Google Scholar
  20. Davydov, A.S., Eremko, A.A., and Sergienko, A.I., 1978, Solitonui b a-spiralnui belkovuix molekulax, Ukraniskii Fizicheskii Zhurnal, 23: 983.Google Scholar
  21. Davydov, A.S., to appear a, Solitons in molecular systems with applications in biology, Physica Scripta.Google Scholar
  22. Davydov, A.S., to appear b, Solitons and energy transfer along protein molecules, J. Theor. Biol.Google Scholar
  23. de Broglie, L., 1960, “Nonlinear Wave Mechanics,” Elsevier, Amsterdam.Google Scholar
  24. de Broglie, L., 1963, “Introduction to the Vigier Theory of Elementary Particles,” Elsevier, Amsterdam.Google Scholar
  25. Derrick, G.H., 1964, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5: 1252.MathSciNetADSCrossRefGoogle Scholar
  26. Einstein, A., 1954, “ideas and Opinions,” Crown, New York.Google Scholar
  27. Enz, U., 1963, Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant varia-tional principle, Phys. Rev., 131: 1392.MathSciNetADSMATHCrossRefGoogle Scholar
  28. Faddeev, L.D., 1975, Hadrons from leptons?, JETP Lett., 21: 64.ADSGoogle Scholar
  29. Faraday, M., 1910, “The Chemical History of a Candle,” The Harvard Classics 30, P.F. Collier and Son, New York.Google Scholar
  30. Feenberg, E., 1935, Born-Infeld field theory of the electron, Phys. Rev., 47: 148.ADSCrossRefGoogle Scholar
  31. Fermi, E., Pasta, J.R., and Ulam, S.M., 1955, “Studies of Nonlinear Problems,” LASL Rept. No. LA-1940.Google Scholar
  32. Fermi, E., 1965, “Collected Works of Enrico Fermi, Vol. II,” U. of Chicago Press.Google Scholar
  33. Fife, P.C., 1979, “Mathematical Aspects of Reacting and Diffusing Systems,” Springer Lecture Notes in Biomathematics, Berlin.Google Scholar
  34. Fisher, R.A., 1937, The waves of advance of advantageous genes, Ann. Eugenics (now Ann. Human Genetics), 7: 355.Google Scholar
  35. Flashka, H., 1974, The Toda lattice. II. Existence of integrals, Phys. Rev., B 9: 1924.MathSciNetADSGoogle Scholar
  36. Frenkel, J., 1934, Born’s theory of the electron, Proc. Roy. Soc. A, 146: 930.ADSMATHCrossRefGoogle Scholar
  37. Frenkel, J., and Kontorova, T., 1939, On the theory of plastic deformation and twinning, J. Phys. (USSR), 1: 137.MathSciNetGoogle Scholar
  38. Gardner, C.S., Green, J.M., Kruskal, M.D., and Miura, R.M., 1967, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19: 1095.ADSMATHCrossRefGoogle Scholar
  39. Gibbons, J., Thornhill, S.G., Wardrop, M.J., and ter Haar, D., 1977, On the theory of Langmuir solitons, J. Plasma Physics, 17: 153.ADSCrossRefGoogle Scholar
  40. Goldstone, J., and Jakiw, R., 1975, Quantization of nonlinear waves, Phys. Rev., D 11: 1486.ADSCrossRefGoogle Scholar
  41. Green, D.E., 1973, Mechanism of energy transduction in biological systems, Science, 181: 583.ADSCrossRefGoogle Scholar
  42. Hamilton, W.C., and Ibers, J.A., 1968, “Hydrogen Bonding in Solids,” W.A. Benjamin, New York.Google Scholar
  43. Heisenberg, W., 1966, “Introduction to the Unified Field Theory of Elementary Particles,” Interscience, N.Y.MATHGoogle Scholar
  44. Helmholtz, H., 1850, Messungen über den zeitlichen Verlauf der Zuchung animalischer Muskeln und die Fortplanzungsgeschwindigkeit der Reizung in der Nerven, Arch. Anat. Physiol., 276.Google Scholar
  45. Helmholtz, H., 1896, Zwei hydrodynamische Abhandhingen: I. Ueber Wirbelbewegungen (1858), II. Ueber discontinuirliche Flüssigkeits bewegungen (1868), Ostwald’s Klassiker, 79.Google Scholar
  46. Henon, M., 1974, Integrals of the Toda lattice, Phys. Rev., B 9: 1921.MathSciNetADSCrossRefGoogle Scholar
  47. Hermann, R., 1977a, “The Geometrie Theory of Nonlinear Waves,” Math. Sei. Press, Brookline, N.Y.Google Scholar
  48. Hermann, R., 1977b, “Toda Lattices, Cosymplectic Manifolds, Bäcklund Transformations and Solitons,” Math. Sei. Press, Brookline, N.Y.Google Scholar
  49. Hermann, R., 1977c, “Geometrie Theory of Nonlinear Differential Equations, Bäcklund Transformations and Solitons,” Math. Sei. Press, Brookline, N.Y.Google Scholar
  50. Hobart, R.H., 1963, On the instability of a class of unified field models, Proc. Phys. Soc., 82: 201.MathSciNetADSCrossRefGoogle Scholar
  51. Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117: 500.Google Scholar
  52. Ichikawa, Y.H., Imamura, T., and Taniuti, T., 1972, Nonlinear wave modulation in collisionless plasmas, J. Phys. Soc. Jap., 33: 189.ADSCrossRefGoogle Scholar
  53. Jakiw, R., 1977, Quantum meaning of classical field theory, Rev. Mod. Phys., 49: 681.ADSCrossRefGoogle Scholar
  54. Kelley, P.L., 1965, Self-focussing of optical beams, Phys. Rev. Lett., 15: 1005.Google Scholar
  55. Khodorov, B.I., 1974, “The Problem of Excitability,” Plenum, New York.CrossRefGoogle Scholar
  56. Kolmogoroff, A., Petrovsky, I., and Piscounoff, N., 1937, Etude de IT equation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moscow, Série Int, A 1: 1.Google Scholar
  57. Korteweg, D.J., and de Vries, G., 1895, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., 39: 422.MATHGoogle Scholar
  58. Lamb, H., 1932, “Hydrodynamics,” 6Tth edition, Dover, New York.MATHGoogle Scholar
  59. Lamb, Jr., G.L., 1971, Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys., 43: 99.Google Scholar
  60. Lamb, Jr., G.L., 1976, Bäcklund transformations at the turn of the century, jm: “Bäcklund Transformations,” R.M. Miura, ed., Springer Math. Series #515.Google Scholar
  61. Lamb, Jr., G.L., to appear, “Elements of Soliton Theory,” Wiley-Inter science, New York.Google Scholar
  62. Lax, P.D., 1968, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21: 467.MathSciNetMATHCrossRefGoogle Scholar
  63. Lonngren, K., and Scott, A., 1978, “Solitons in Action,” Academic Press, New York.MATHGoogle Scholar
  64. Makhankov, V.G., 1978, Dynamics of classical solitons (in non- integrable systems), Phys. Repts., 35: 1.MathSciNetADSCrossRefGoogle Scholar
  65. McLaughlin, D.W., and Scott, A.C., 1978, Perturbation analysis of fluxon dynamics, Phys. Rev., A 18: 1652.Google Scholar
  66. Mie, G., 1912a, Theory of matter, Ann. d. Physik, 37: 511.ADSMATHCrossRefGoogle Scholar
  67. Míe, G., 1912b, Foundation of a theory of matter, Ann, d. Physik, 39: 1.ADSCrossRefGoogle Scholar
  68. Mie, G., 1912c, Basis of a theory of matter, Ann. d. Physik, 40: 1.ADSCrossRefGoogle Scholar
  69. Miles, J.W., 1980, Solitary waves, Annual Rev. of Fluid Mechanics, 12: 11.ADSCrossRefGoogle Scholar
  70. Miura, R.M., 1968a, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9: 1202.MathSciNetADSMATHCrossRefGoogle Scholar
  71. Miura, R.M., 1968b, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9: 1204.Google Scholar
  72. Miura, R.M., 1976, The Koretweg-de Vries equation: A survey of results, SIAM Rev., 18: 412.MathSciNetADSMATHCrossRefGoogle Scholar
  73. Nagumo, J., Arimoto, S., and Yoshizawa, S., 1962, An active pulse transmission line simulating nerve axon, Proc. IRE, 50: 2061.CrossRefGoogle Scholar
  74. Nagumo, J., Yoshizawa, S., Arimoto, S., 1965, Bistable transmission lines. Trans. IEEE on Circuit Theory, CT- 12: 400.Google Scholar
  75. Nevskaya, N.A., and Chirgadze, Yu. N., 1976, Infrared spectra and resonance interactions of amide-I and II vibrations of a-helix, Biopolymers, 15: 637.CrossRefGoogle Scholar
  76. Newell, A.C., 1974, “Nonlinear Wave Motion,” AMS Lectures in Appl. Math. 15, (Conference held at Clarkson College, Potsdam, N.Y. 1972.).Google Scholar
  77. Offner, F., Weinberg, A., and Young, G., 1940, Nerve conduction theory: Some mathematical consequences of Bernstein’s model, Bull Math, Biophys., 2: 89.MathSciNetCrossRefGoogle Scholar
  78. Parsa, Z., 1979, Topological solitons in physics, Am. J. Phys., 47: 56.MathSciNetADSCrossRefGoogle Scholar
  79. Pauling, L., Corey, R.B., and Branson, H.R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. N.A.S., 37: 205.ADSCrossRefGoogle Scholar
  80. Perring, J.K., and Skyrme, T.H.R., 1962, A model unified field equation, Nucl. Phys., 31: 550.MathSciNetMATHCrossRefGoogle Scholar
  81. Rebbi, C., 1979, Solitons, Scientific American, 240: 92.ADSCrossRefGoogle Scholar
  82. Robinson, J., and Russell, J.S., 1838, 7th Meeting of the British Assoc. Adv. Sei.Google Scholar
  83. Rosen, G., 1965, Particle-like solutions to nonlinear scalar wave theories, J. Math. Phys., 6: 1269.ADSCrossRefGoogle Scholar
  84. Rubinstein, J., 1970, Sine-Gordon equation, J. Math. Phys., 11: 258.ADSCrossRefGoogle Scholar
  85. Russell, J.S., 1844, Report on waves, 14th Meeting of the British Assoc. Adv. Sei.Google Scholar
  86. Russell, J.S., 1885, The waves of translation in the oceans of water, air and ether, London.Google Scholar
  87. Schuster, P., Zundel, G., and Sandorfy, C., ed.,1976, The Hydrogen Bond,11 (3 volumes) North-Holland Publ. Co., Amsterdam.Google Scholar
  88. Scott, A.C., 1962, Analysis of nonlinear distributed systems, Trans. IRE, CT- 9: 192.Google Scholar
  89. Scott, A.C., 1975, The electrophysics of a nerve fibre, Rev. Mod. Phys., 47: 487.ADSCrossRefGoogle Scholar
  90. Scott, A.C., 1977, “Neurophysics,” Wiley-Interscience, N.Y.Google Scholar
  91. Scott, A.C., Chu, F.Y.F., and Reible, S.A., 1976, Magnetic flux propagation on a Josephson transmission line, J. Appl. Phys., 47: 3272.ADSCrossRefGoogle Scholar
  92. Scott, A.C., 1979, Sine-Gordon breather dynamics, Physica Scripta, 20: 509.MathSciNetADSMATHCrossRefGoogle Scholar
  93. Scott, A.C., and Luzader, S.D., 1979, Coupled solitary waves in neurophysics, Physica Scripta, 20: 395.ADSCrossRefGoogle Scholar
  94. Seeger, A., Donth, H., and Kochendörfer, 1951, Theorie der Versetzungen in eindimensionalen Atomreihen, II., Z. Phys., 130: 321.ADSMATHCrossRefGoogle Scholar
  95. Seeger, A., Donth, H., and Kochendörfer, 1953, Theorie der Versetzungen in eindimensionalen Atomreihen, III., Z. Phys., 134: 173.MathSciNetADSMATHCrossRefGoogle Scholar
  96. Skyrme, T.H.R., 1971, Kinks and Dirac equation, J. Math. Phys., 12: 1735.MathSciNetADSCrossRefGoogle Scholar
  97. Takhtadzhyan, L.A., and Faddeev, L.D., 1974, Essentially nonlinear one-dimensional model of classical field theory, Theor. and Math. Phys., 21: 1046.ADSCrossRefGoogle Scholar
  98. Tappert, F., and Varma, C.M., 1970, Asymptotic theory of self-trapping of heat pulses in solids, Phys. Rev. Lett., 25: 1108.MathSciNetADSCrossRefGoogle Scholar
  99. Toda, M., 1967a, Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan, 22: 431.ADSCrossRefGoogle Scholar
  100. Toda, M., 1967b, Wave propagation in anharmonic lattices, J. Phys. Soc. Japan, 23: 501.ADSCrossRefGoogle Scholar
  101. Toda, M., 1969, Mechanical and statistical mechanics of nonlinear chains, J. Phys. Soc. Japan, 26 sup.: 235.Google Scholar
  102. Toda, M., and Wadati, M., 1973, A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Japan, 34: 18.ADSCrossRefGoogle Scholar
  103. Toda, M., 1975, Studies of a nonlinear lattice, Phys. Reports, 18: 1.MathSciNetADSCrossRefGoogle Scholar
  104. Wahlquist, H.D., and Estabrook, F.B., 1973, Backlund transformation for solution of the Korteweg-de Vries equation, Phys. Rev. Lett., 31: 1386.MathSciNetADSCrossRefGoogle Scholar
  105. Whitham, G.B., 1965a, A general approach to linear and nonlinear dispersive waves using a Lagrangian, J. Fluid Mech., 22: 273.MathSciNetADSCrossRefGoogle Scholar
  106. Whitham, G.B., 1965b, Nonlinear dispersive waves, Proc. Roy. Soc. A, 283: 238.MathSciNetADSMATHCrossRefGoogle Scholar
  107. Whitham, G.B., 1967a, Nonlinear dispersion of water waves, J. Fluid Mech., 27: 399.MathSciNetADSMATHCrossRefGoogle Scholar
  108. Whitham, G.B., 1967b, Variational methods and applications to water waves, Proc. Roy. Soc., 299: 6.ADSMATHCrossRefGoogle Scholar
  109. Whitham, G.B., 1970, Two-timing, variational principles and waves, J. Fluid Mech., 44: 373.MathSciNetADSMATHCrossRefGoogle Scholar
  110. Whitham, G.B., 1974, “Linear and Nonlinear Waves,” Wiley, N.Y.MATHGoogle Scholar
  111. Zabusky, N.J., and Kruskal, M.D., 1965, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15: 240.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Alwyn C. Scott
    • 1
  1. 1.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations