Cell Analysis pp 195-331 | Cite as

Sizing of Cells by the Electrical Resistance Pulse Technique

Methodology and Application in Cytometric Systems
  • Volker Kachel


Cells are the constructive elements of all complex biological organisms. It is evident that the size and number of the basic elements define the size of the complete organism or the size of the organs of the organism. Growth of an organism is caused by the growth of the cells, by an increase of the number of cells, or by both. By counting and sizing cells, such fundamental events can be investigated.


Pulse Height Coulter Counter Orifice Diameter Homogeneous Field Particle Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. B. (1968) Particle stream position effects in electrical sizing, Biophys. Soc. Abstr. 8:A112.Google Scholar
  2. Adams, R. B., and Gregg, E. C. (1972) Pulse shapes from particles traversing Coulter orifice fields, Phys. Med. Biol. 17:830.CrossRefGoogle Scholar
  3. Adams, R. B., Voelker, W. H., and Gregg, E. C. (1967) Electrical counting and sizing of mammalian cells in suspension. An experimental evaluation, Phys. Med. Biol. 12:79.CrossRefGoogle Scholar
  4. Adell, R., Skaklak, R., and Branemark, P. J. (1970) A preliminary study of rheology of granulocytes, Blut 21:91.CrossRefGoogle Scholar
  5. Ahrens, O., Albrecht, U., and Rajewsky, M. F. (1980) Microprocessor based data acquisition system for flow cytometers, in: Flow Cytometry IV (O. Laerum, T. Lindmo, and E. Thoroud, eds.), Universiteteforlaget Bergen, Bergen, Norway, pp. 112–115.Google Scholar
  6. Alabaster, O., Glaubiger, D. L., Hamilton, V. T., Bentley, S. A., Shackney, S. E., Skramstad, K. S., and Chen, R. F. (1980) Electrolytic degradation of DNA fluorochromes during flow cytometric measurement of electronic cell volume, J. Histochem, Cytochem. 28:330.CrossRefGoogle Scholar
  7. Allan, R. S., and Mason, S. G. (1962) Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. A,267:45.Google Scholar
  8. Anderson, J. L. and Quinn, J. A. (1971) The relationship between particle size and signal in Coulter-type counters, Rev. Sci. Instr. 42:1257.CrossRefGoogle Scholar
  9. Benker, G. (1978) Entwurf und Aufbau einer elektronisch gesteuerten Bildaufzeichnungseinheit fuer Aufnahmen von biologischen Zellen in einem Durchflusszytometer, Thesis, Technische Universität München.Google Scholar
  10. Benker, G., Kachel, V., and Valet, G. (1980) A computer controlled data managing system for multiparameter flow cytometric analyses, in: Flow Cytometry IV (O. Laerum, T. Lindmo, and E. Thoroud, eds.), Universitetsforlaget Bergen, Bergen, Norway, pp. 116–119.Google Scholar
  11. Ben Sasson, S., Patinkin, D., Grover, N. B., and Doljanski, F. (1974) Electrical sizing of particles in suspension. IV. Lymphocytes, J. Cell Physiol. 84:205.CrossRefGoogle Scholar
  12. Bonner, W. A., Hulett, H. R., Sweet, R. G., and Herzenberg, L. A. (1972) Fluorescence activated cell sorting, Rev. Sci. Instrum. 43:404.CrossRefGoogle Scholar
  13. Boss, N., Chmiel, H., Kachel, V., and Ruhenstroth-Bauer, G. (1973) Erythrocytenaggregation bei Nichtrauchern, Rauchern und Herzinfarktpatienten, Blut 27:191.CrossRefGoogle Scholar
  14. Boss, N., Koenig, S., and Ruhenstroth-Bauer, G. (1975) Erythrocytenaggregation bei Menschen mit Risikofaktoren eines Herzinfarkts, Klin, Wochenschr. 53:385.CrossRefGoogle Scholar
  15. Boss, N., Wietelmann, H., Bierner, M., Rudolph, W., Schlepper, M., Koenig-Erich, S., and Ruhenstroth-Bauer, G. (1980) Red blood cell aggregation in men with coronary artery disease, Eur. J. Cardiol. 12:47.Google Scholar
  16. Brecher, G., Jakobek, E. F., Schneiderman, M. A., Williams, G. Z., and Schmidt, P. J. (1962) Size distribution of erythrocytes, Ann. N.Y. Acad. Sci. 99:242.CrossRefGoogle Scholar
  17. Breitmeyer, M. O., Lightfoot, E. N., and Dennis, W. H. (1971) Model of red blood cell rotation in the flow toward a cell sizing orifice. Application to volume distribution, Biophys. J. 11:146.CrossRefGoogle Scholar
  18. Brotherton, J. (1975) The counting and sizing of spermatozoa from 10 animal species using a Coulter counter, Andrologia 7:169.CrossRefGoogle Scholar
  19. Buckhold, B. M., Murphy, J. R., Adams, R. B., and Steidley, K. D. (1969) Erythrocyte deformability and the bimodal volume distribution, Biophys. Soc. Abstr. 8:A113.Google Scholar
  20. Bull, B. S. (1968) On the distribution of red cell volumes, Blood 31:503.Google Scholar
  21. Cassidy, M., Fowlkes, B. J., and Herman, C. J. (1975) Electronic cell volume (Coulter volume) distribution of vaginal-cervical cytoloby samples, Acta Cytol. 19:117.Google Scholar
  22. Chase, R. L., and Poulo, L. R. (1967) A high precision dc restorer, IEEE Trans. Nucl, Sci. 167:83.CrossRefGoogle Scholar
  23. Chaussy, L., Baethmann, A., and Lubitz, W. (1981) Electrical sizing of nerve and glia cells in the study of cell volume regulation, in: Cerebral Microcirculation and Metabolism (J. Cervaos-Navarro and E. Fritschka, eds.), Raven Press, New York.Google Scholar
  24. Coulter Electronics (1971) Deutsche Patentschrift 2,153,123. Corresponds to U.S. Patents 84,440; 101,352; 113,165; 113,920.Google Scholar
  25. Coulter Electronics (1972) Deutsche Patentschrift 2,216,826. Corresponds to U.S. Patents 132,771; 142,531.Google Scholar
  26. Coulter, W. H. (1953) Means for counting particles suspended in a fluid, U.S. Patent No. 2,656,508.Google Scholar
  27. Coulter, W. H. (1956) High speed automatic blood cell counter and cell size analyzer, Proc. Natl El. Conf., Chicago 12:1034.Google Scholar
  28. Coulter, W. H. (1966) Manual to Coulter counter.Google Scholar
  29. Coulter, W. H., Hogg, W. R., Moran, J. P., and Claps, W. A. (1959) Particle analyzing device, U.S. Patent No. 3,259,842.Google Scholar
  30. Cutts, H. J. (1972) Balanced salt solutions, in: Cell Separation Methods in Hematology (H. J. Cutts, ed.), Academic Press, New York, pp. 169–174.Google Scholar
  31. Davies, R. (1978) Recent progress in rapid-response and on-line methods for particle size analysis, Am. Lab. 10(4):97.Google Scholar
  32. Davies, R., Karuhn, R., and Graf, J. (1975) Studies on the Coulter counter, part II. Investigations into the effect of flow direction and angle of entry of a particle on both particle volume and pulse shape, Powder Technol. 12:157.CrossRefGoogle Scholar
  33. Deaver, J. R. (1978) Modeling limits to cell size, Am. Biol. Teacher 40:502.Google Scholar
  34. DeBlois, R. W., and Bean, C. P. (1970) Counting and sizing of submicron particles by the resistive pulse technique, Rev. Sci. Instr. 41:909.CrossRefGoogle Scholar
  35. De Blois, R. W., Mayyasi, S. A., Schildlovsly, G., Wesley, R., and Wolff, J. S. (1974) Virus counting and analysis by the resistive pulse (Coulter counter) technique, Proc. Am. Assoc. Cancer Res. 15:104.Google Scholar
  36. Dittrich, W., and Goehde, W. (1969) Impulsfluorometrie bei Einzelzellen in Suspensionen, Z. Naturforsch. 24b:360.Google Scholar
  37. Doljanski, F., Zajicek, G., and Naaman, J. (1966) The size distribution of normal human red blood cells, Life Sci. 5:2095.CrossRefGoogle Scholar
  38. Eck, B. (1961) Technische Stroemungslehre, Springer, Berlin.Google Scholar
  39. Ferris, C. D. (1963) Four-electrode electronic bridge for electrolyte impedance determinations, Rev. Sci. Instr. 34:109.CrossRefGoogle Scholar
  40. Fricke, H. (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems, Phys. Rev. 24:575.CrossRefGoogle Scholar
  41. Fricke, H. (1953) The Maxwell-Wagner dispersion in a suspension of ellipsoids, J. Phys. Chem. 57:934.CrossRefGoogle Scholar
  42. Fulwyler, M. J. (1965) Electronic separation of biological cells by volume, Science 150:910.CrossRefGoogle Scholar
  43. Gebicki, J. M., and Hunter, F. W. (1964) Determination of swelling and disintegration of mitochondria with an electronic particle counter, J. Biol. Chem. 293:631.Google Scholar
  44. Geigy, A. G. (Basel) (1975) Wissenschaftliche Tabellen, Thieme Verlag, Stuttgart.Google Scholar
  45. Goldsmith, H. L. (1971) Deformation of human red blood cells in tube flow, Biorheology 7:233.Google Scholar
  46. Golibersuch, D. C. (1973) Observation of aspherical particle rotation in Poiseuille flow via the resistance pulse technique, Biophys. J. 13:265.CrossRefGoogle Scholar
  47. Grant, J. L., Britton, M. C., and Kurtz, T. E. (1960) Measurement of red blood cell volume with the electronic cell counter, Am. J. Clin. Pathol. 33:138.Google Scholar
  48. Gray, J. W., and Dean, P. W. (1980) Display and analysis of flow cytometric data, Ann. Rev. Biophys. Bioeng. 9:509.CrossRefGoogle Scholar
  49. Gregg, E. C., and Steidley, K. D. (1965) Electrical counting and sizing of mammalian cells in suspension, Biophys. J. 5:393.CrossRefGoogle Scholar
  50. Grover, N. B., Naaman, J., Ben Sasson, S., and Doljanski, F. (1969a) Electrical sizing of particles in suspension. I. Theory, Biophys. J. 9:1398.CrossRefGoogle Scholar
  51. Grover, N. B., Naaman, J., Ben Sasson, S., Doljanski, F., and Nadev, E. (1969b) Electrical sizing of particles in suspension. II. Experiments with rigid spheres, Biophys. J. 9:1415.CrossRefGoogle Scholar
  52. Grover, N. B., Naaman, J., Ben Sasson, S., and Doljanski, F. (1972) Electrical sizing of particles in suspension. III. Rigid spheroids and blood cells, Biophys. J. 12:1099.CrossRefGoogle Scholar
  53. Groves, M. R. (1980) Application of the electrical sizing principle of Coulter to a new multiparameter system, IEEE Trans. Biomed. Eng. 27:364.CrossRefGoogle Scholar
  54. Gutmann, J. (1966) Elektronische Verfahren zur Ermittlung statistischer Masszahlen einiger medizinisch wichtiger Daten, Elektromedizin 11:62.Google Scholar
  55. Haigh, G. T. (1973) Current normalizer for particle size analysis apparatus, U.S. Patent No. 3,745,455.Google Scholar
  56. Hanser, H., Valet, G., Boss, N., and Ruhenstroth-Bauer, G. (1974) Origin and regulation of the different erythrocyte volume populations in the newborn rat, XV Congress of the International Society of Hematology, Jerulalem, p. 318.Google Scholar
  57. Hanser, G., Valet, G., and Ruhenstroth-Bauer, G. (1979) Multi gene switches differentiation in the erythropoietic development of the young rat induced by diffusible substances, Hoppe Seyler’s Z. Physiol. Chem. 360:277.Google Scholar
  58. Harvey, R. J. (1968) Measurement of cell volumes by electric sensing zone instruments, Meth. Cell Physiol. 3:1.CrossRefGoogle Scholar
  59. Harvey, R. J., and Marr, A. G. (1966) Measurement of size distributions of bacterial cells, J. Bacteriol. 92:805.Google Scholar
  60. Haynes, J. L. (1980) High resolution particle analysis—Its application to platelet counting and suggestions for further application in blood cell analysis, Blood Cells 6:201.Google Scholar
  61. Haynes, J. L., and Shoor, B. A. (1978) Particle density measuring system, U.S. Patent No. 4, 110,604.Google Scholar
  62. Helleman, P. W. (1972) The Coulter Electronic Particle Counter, (the Netherlands) De Bilt, Holland.Google Scholar
  63. Howard, R. B., and Pesch, L. A. (1968) Respiratory activity of intact isolated parenchymal cells from rat liver, J. Biol. Chem. 243:3105.Google Scholar
  64. Hueller, R. (1980) Untersuchungen an einem Durchflusszytometer mit selektiver Zellabbildung, Thesis, Fachhochschule München.Google Scholar
  65. Hurley, J. (1970) Sizing particles with a Coulter counter, Biophys. J. 10:74.CrossRefGoogle Scholar
  66. Jeltsch, E., and Zimmermann, U. (1979) Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a Coulter counter, J. Electroanal. Chem. 104:349.CrossRefGoogle Scholar
  67. Kachel, V. (1970) Measuring chamber for cell volume according to Coulter, XIII Cong. Hematol. Muenchen Abstr. pp. 392–392.Google Scholar
  68. Kachel, V. (1972) Methods of analysis and correction of instrumental errors in the electronic method of Coulter for particle sizing, Doctoral Thesis, Technische Universität Berlin.Google Scholar
  69. Kachel, V. (1973) The improvement of resolution in Coulter particle sizing by an electronic method, Blut 27:270.CrossRefGoogle Scholar
  70. Kachel, V. (1974a) Methodology and results of optical investigations of form-factors during determination of cell volumes according to Coulter, Microsc. Acta 75:419.Google Scholar
  71. Kachel, V. (1974b) Schaltung zur Eichung einer Anordnung zur Partikelvolumenmessung, German Patent No. 24, 28, 082. 8.Google Scholar
  72. Kachel, V. (1975) An improved device according to Coulter to measure volumes of cells and particles equipped with a particle independent calibrating system, Biomed. Tech. 20 (Suppl. Vol May):191.Google Scholar
  73. Kachel, V. (1976) Basic principles of electrical sizing of cells and particles and their realization in the new instrument METRICELL, J. Histochem. Cytochem. 24:211.CrossRefGoogle Scholar
  74. Kachel, V. (1979) Electrical resistance pulse sizing (Coulter sizing), in: Flow Cytometry and Sorting (M. Melamed, P. Mullaney, M. Mendelsohn, eds.), John Wiley and Sons, New York, pp. 61–104.Google Scholar
  75. Kachel, V., and Glossner, E. (1976) Vorrichtung zur Durchfuhrung von mindestens zwei Messungen von Eigenschaften in einer Partikelsuspension suspendierter Partikel, German Patent No. 26, 56, 624. 1.Google Scholar
  76. Kachel, V., and Glossner, E. (1977) Vorrichtung zur Messung bestimmter Eigenschaften in einer Partikelsuspension suspendierter Partikel, German Patent No. 27, 50, 447, 8.Google Scholar
  77. Kachel, V., and Meier, H. (1980) Control unit for on-line handling of three-parameter flow cytometric data, in: Flow Cytometry IV (O. Laerum, T. Lindmo, and E. Thoroud, eds.), Universitetsforlaget Bergen, pp. 120-124.Google Scholar
  78. Kachel, V., and Menke, E. (1979) Hydrodynamic properties of flow cytometric instruments, in: Flow Cytometry and Sorting (M. Melamed, P. Mullaney, M. Mendelsohn, eds.), John Wiley and Sons, New York, pp. 41–59.Google Scholar
  79. Kachel, V., Metzger, H., and Ruhenstroth-Bauer, G. (1970) The influence of the particle path on the volume distribution curves according to the Coulter method, Z. Ges. Exp. Med. 153:331.CrossRefGoogle Scholar
  80. Kachel, V., Glossner, E., and Kordwig, E. (1974) Vorrichtung zur Messung bestimmter Eigenschaften in einer Fluessigkeit suspendierter Partikel, German Patent No. 24, 620, 63. 1.Google Scholar
  81. Kachel, V., Glossner, E., Kordwig, E., and Ruhenstroth-Bauer, G. (1977) FLUVO-METRI-CELL, a combined cell volume and cell fluorescence analyzer, J. Histochem. Cytochem. 25:804.CrossRefGoogle Scholar
  82. Kachel, V., Benker, G., Lichtnau, K., Valet, G., and Glossner, E. (1979) Fast imaging in flow: A means of combining flow-cytometry and image analysis, J. Histochem. Cytochem. 27:335.CrossRefGoogle Scholar
  83. Kachel, V., Benker, G., Weiss, W., Glossner, E., Valet, G., and Ahrens, O. (1980a) Problems of fast imaging in flow, in: Flow Cytometry IV (O. Laerum, T. Lindmo, and E. Thoroud, eds.), Universitetsforlaget Bergen, Bergen, Norway, pp. 49–55.Google Scholar
  84. Kachel, V., Schneider, H., and Schedler, K. (1980b) A new flow cytometric pulse height analyzer offering microprocessor controlled data acquisition and statistical analysis, Cytometry 1:175.CrossRefGoogle Scholar
  85. Karuhn, R., Davies, R., Kaye, B. H., and Clinch, M. J. (1975) Studies on Coulter counter. Part 1: Investigations into the effect of orifice geometry and flow direction on the measurement of particle volume, Powder Technol. 11:157.CrossRefGoogle Scholar
  86. Kay, D. B., Cambier, J. L., and Wheeless, L. L. (1979) Imaging in flow, J. Histochem. Cytochem. 27:329.CrossRefGoogle Scholar
  87. Koller, A. (1970) POT 123 Numerische Berechnung von Potentialfeldern Data Praxis, Siemens Publication, Bereich Datenverarbeitung, Munich.Google Scholar
  88. Kubek, D. J., and Shuler, M. L. (1978) Electronic measurement of plant cell number and size in suspension culture, J. Exp. Botany 29:511.CrossRefGoogle Scholar
  89. Kubitschek, H. E. (1958) Electronic counting and sizing of bacteria, Nature (London) 182:234.CrossRefGoogle Scholar
  90. Kubitschek, H. E. (1960) Electronic measurement of particle size, Research (London) 13:128.Google Scholar
  91. Langhaar, H. L. (1942) Steady flow in the transition length of a straight tube, J. Appl. Mech. 9:A55.Google Scholar
  92. Leif, R. C., and Thomas, R. A. (1973) Electronic cell-volume analysis by use of AMAC I transducer, Clin. Chem. 19:853.Google Scholar
  93. Lewis, H. D., and Goldman, A. (1965) Proper analysis of Coulter counter data, Rev. Sci. Instr. 36:868.CrossRefGoogle Scholar
  94. Lusbaugh, C. C., Maddy, J. A., and Basman, N. J. (1962a) Electronic measurement of cellular volumes. I. Calibration of the apparatus, Blood 20:233.Google Scholar
  95. Lusbaugh, C. C., Baseman, J. J., and Glascock, B. (1962b) Electronic measurement of cellular volumes. II. Frequency distribution of erythrocyte volumes, Blood 20:241.Google Scholar
  96. Malin-Berdel, J., and Valet, G. (1980) Flow cytometric determination of esterase and phosphatase activities and kinetics in hematopoietic cells with fluorogenic substrates, J. Histochem, Cytochem. 1:222.Google Scholar
  97. Mattern, C. F. T., Brackett, F. S., and Olson, B. J. (1957) Determination of number and size of particles by electrical gating: Blood cells, J. Appl. Physiol. 10:56.Google Scholar
  98. Maxwell, J. C. (1883) Lehrbuch der Elektrizitaet und des Magnetismus, Springer-Verlag, Berlin.Google Scholar
  99. Mel, H. C., and Yee, J. P. (1975) Erythrocyte size and deformability studies by resistive pulse spectroscopy, Blood Cells 1:391.Google Scholar
  100. Menke, E., Kordwig, E., Stuhlmueller, P., Kachel, V., and Ruhenstroth-Bauer, G. (1977) A volume activated cell sorter, J. Histochem. Cytochem. 25:796.CrossRefGoogle Scholar
  101. Mercer, W. B. (1966) Calibration of Coulter counters for particles 1 μ diameter, Rev. Sci. Instr. 37:1515.CrossRefGoogle Scholar
  102. Merrill, J. T., Veizades, N., Hulett, H. R., Wolf, P. L., and Herzenberg, L. A. (1971) An improved cell volume analyzer, Rev. Sci. Instr. 42:1157.CrossRefGoogle Scholar
  103. Metzger, H., Kachel, V., and Ruhenstroth-Bauer, G. (1971) The influence of particle size, form and consistence on the right skewness of Coulter volume distribution curves, Blut 23:143.CrossRefGoogle Scholar
  104. Metzger, H., Valet, G., Kachel, V., and Ruhenstroth-Bauer, G. (1972) The calibration by electronic means of Coulter counters for determination of absolute particle volumes, Blut 25:179.CrossRefGoogle Scholar
  105. Miller, G. G., and Wuest, L. J. (1972) Volume analysis of human red cells. II. The nature of the residue, Ser. Hematol. 5(2):128.Google Scholar
  106. Miller, R. G., Wuest, L. J., and Cowan, D. H. (1972) Volume analysis of human red cells. I. The general procedures, Ser. Hematol. 5(2):105.Google Scholar
  107. Nash, G. B., Tathan, P. E. R., Powell, T., Twist, V. W., Speller, R. D., and Loverock, L. T. (1979) Size measurements on isolated rat heart cells using Coulter analysis and light scatter flow cytometry, Biochim. Biophys. Acta 587:99.CrossRefGoogle Scholar
  108. Nevius, D. B. (1963) Osmotic error in electronic determinations of red cell volume, Am. J. Clin. Pathol. 39:38.Google Scholar
  109. Newbould, F. H. (1974) Electronic counting of somatic cells in farm bulk tank milk, J. Milk Food 37:504.Google Scholar
  110. Otto, F. (1970) Granulocytenisolierung aus dem Blut des Menschen und der Tiere, Blut 21:290.CrossRefGoogle Scholar
  111. Otto, F., and Schmid, D. O. (1970) Lymphocytenisolierung aud dem Blut des Menschen und der Tiere, Blut 21:118.CrossRefGoogle Scholar
  112. Patzelt, R. (1968) Improved base-line stabilization for pulse amplifiers, Nucl. Instr. Meth. 59:283.CrossRefGoogle Scholar
  113. Paulus, J. M. (1975) Platelet size in man, Blood 46:321.Google Scholar
  114. Prantl, L. (1965) Fuehrer durch die Stroemungslehre, Verlag F. Vieweg und Sohn, Braunschweig.Google Scholar
  115. Price-Jones, C. (1910) The variations in the sizes of red blood cells, Br. Med. J. 2:1418.Google Scholar
  116. Princen, L. H. (1966) Improved determination of calibration and coincidence correction constants for coulter counters, Rev. Sci. Instr. 37:1416.CrossRefGoogle Scholar
  117. Princen, L. H., and Kwolek, W. F. (1965) Coincidence corrections for particle size determinations with the Coulter counter, Rev. Sci. Instr. 36:646.CrossRefGoogle Scholar
  118. Rackham, S. J., and Sherlock, R. A. (1979) A pulse height analyzer for displaying Coulter counter particle size distributions, IEEE Trans. Biomed. Eng. 26:436.CrossRefGoogle Scholar
  119. Robinson, L. B. (1961) Reduction of baseline shift in pulse amplitude measurements, Rev. Sci. Instr. 32:1057.CrossRefGoogle Scholar
  120. Ross, D. W. (1978) The significance of leukemic cell volume distribution, Nouv. Rev. Franc. Hematol. 20:297.Google Scholar
  121. Ruhenstroth-Bauer, G., Valet, G., Kachel, V., and Boss, N. (1974) The electrical volume determination of blood cells in erythropoiesis, smokers, patients with myocardial infarction and leukemia and of liver cell nuclei, Naturwissenschaften 61:260.CrossRefGoogle Scholar
  122. Rumscheidt, F. D., and Mason, S. G. (1961) Particle motion in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow, J. Colloid Sci. 16:238.CrossRefGoogle Scholar
  123. Sadikov, I. N. (1967) Motion of a viscous fluid in the initial section of a flat channel, Inzh. Fiz. Zh. 12:219.Google Scholar
  124. Salzman, G. C., Mullaney, P. F., and Coulter, J. R. (1973) A Coulter volume spectrometer employing a potential sensing technique, Biophys. Soc. Abstr. 17:302a.Google Scholar
  125. Scheer, U., and Schellong, G. (1979) The prognostic value of measuring cell size in acute childhood leukemia, Klin. Paediat. 191:127.Google Scholar
  126. Schmid-Schoenbein, H., and Wells, R. (1969) Fluid drop like transition of erythrocytes under shear, Science 165:288.CrossRefGoogle Scholar
  127. Schmid-Schoenbein, H., Wells, R. E., and Goldstone, J. (1971) Fluid drop like behaviour of erythrocytes. Disturbance in pathology and its quantification, Biorheology 7:227.Google Scholar
  128. Schultz, J., and Nitsche, H. J. (1972) Nachweis des transzellulaeren Ionenflusses bei der Volumenbestimmung von nativen Humanerythrozyten, Telefunken Publication N1/EP/V 1698.Google Scholar
  129. Schulz, J., and Thom, R. (1973) Electrical sizing and counting of platelets in whole blood, Med. Biol. Eng. 1973:447.CrossRefGoogle Scholar
  130. Shank, B. B., Adams, R. B., Steidley, K. D., and Murphy, L. R. (1969) A physical explanation of the bimodal distribution obtained by electronic sizing of erythrocytes, J. Lab. Clin. Med. 74:630.Google Scholar
  131. Sharpless, T. K. (1979) Cytometric data processing, in: Flow Cytometry and Sorting (M. Melamed, P. Mullaney and M. Mendelsohn, eds.), John Wiley and Sons, New York, p. 367.Google Scholar
  132. Shuler, M. L., Aris, R., and Tsuchiya, H. M. (1972) Hydrodynamic focusing and electronic cell sizing techniques, Appl. Microbiol. 24:384.Google Scholar
  133. Smith, A. M. O. (1960) Remarks on transition in a round tube, J. Fluid Mech. 7:565.MATHCrossRefGoogle Scholar
  134. Smither, R. (1975) Use of a Coulter counter to detect discrete changes in cell numbers and volume during growth of Escherichia coli, J. Appl. Bacteriol. 39:157.CrossRefGoogle Scholar
  135. Smythe, W. R. (1961) Flow around a sphere in a circular tube, Phys. Fluids 4:756.MATHMathSciNetCrossRefGoogle Scholar
  136. Smythe, W. R. (1964) Flow around spheroids in a circular tube, Phys. Fluids 7:633.MATHCrossRefGoogle Scholar
  137. Spielman, L., and Goren, S. L. (1968) Improving resolution in Coulter counting by hydrodynamic focusing, J. Colloid Interface Sci. 26:175.CrossRefGoogle Scholar
  138. Steen, H. B., and Nielsen, V. (1979) Lymphocyte blastogenesis studied by volume spectroscopy, Scand. J. Immunol. 10:135.CrossRefGoogle Scholar
  139. Steinkamp, J. A., Fulwyler, M. J., Coulter, J. R., Hiebert, R. D., Horney, J. L., and Mullaney, P. F. (1973) A new multiparameter separator for microscopic particles and biological cells, Rev. Sci. Instr. 44:1301.CrossRefGoogle Scholar
  140. Strackee, J. (1966) Coincidence loss in blood counters, Med. Biol. Eng. 4:97.CrossRefGoogle Scholar
  141. Tatsumi, T. (1952) Stability of the laminar inlet-flow prior to the formation of Poiseuille regime. I., J. Phys. Soc. Jpn. 7:489.MathSciNetCrossRefGoogle Scholar
  142. Thom, R. (1968) Zur Rechtsschiefe der Erythrozyten Volumenverteilungskurven, Coulter Symposion Bad Nenndorf pp. 33–36.Google Scholar
  143. Thom, R. (1972a) Method and result by improved electronic cell sizing, in: Modern Concepts in Hematology (G. Izak, ed.), Academic Press, New York, pp. 191–200.Google Scholar
  144. Thom, R. (1972b) Vergleichende Untersuchungen zur elektronischen Zellvolumenanalyse, Telefunken Publikation Nl/EP/V 1698.Google Scholar
  145. Thom, R., and Kachel, V. (1971) Fortschritte ’fuer die elektrcr elektronische Groessenbestimmung von Blutkoerperchen, Blut 21:48.CrossRefGoogle Scholar
  146. Thom, R., Hampe, A., and Sauerbrey, G. (1969) Die elektronische Volumenbestimmung von Blutkoerperchen und ihre Fehlerquellen, Z. Gesamte Exp. Med. 151:331.CrossRefGoogle Scholar
  147. Thomas, R. A., Cameron, B. F., and Leif, R. C. (1974) Computer based electronic cell volume analysis with the AMAC II transducer, J. Histochem, Cytochem. 22:626.CrossRefGoogle Scholar
  148. Tietze, U., and Schenk, C. (1971) Halbleiter Schaltungstechnik, 2nd ed., Springer, Berlin, Heidelberg, New York.Google Scholar
  149. Valet, G. (1980) Graphical representation of three-parameter flow cytometer histograms by a newly developed FORTRAN IV computer program, in: Flow Cytometry IV (O. Laerum, T. Lindmo, and E. Thoroud, eds.), Universitetsforlaget Bergen, Bergen, Norway, pp. 125–129.Google Scholar
  150. Valet, G. and Opferkuch, W. (1975) Mechanism of complement-induced cell lysis demonstrating a three step mechanism of EACl-8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes, J. Immunol. 115:1028.Google Scholar
  151. Valet, G., Metzger, H., Kachel, V., and Ruhenstroth-Bauer, G. (1972a) The volume distribution curves of rat erythrocytes after whole body X-irradiation, Blut 24:274.CrossRefGoogle Scholar
  152. Valet, G., Megzger, H., Kachel, V., and Ruhenstroth-Bauer, G. (1972b) The demonstration of several erythrocyte populations in the rat, Blut 24:42.CrossRefGoogle Scholar
  153. Valet, G., Hanser, H., Metzger, H., and Ruhenstroth-Bauer, G. (1974) Several erythrocyte populations in the blood of the newborn rat, mouse, guinea pig and in the human fetus, XVth Congress of the International Society of Hematology Jerusalem, p. 317.Google Scholar
  154. Valet, G., Schindler, R., Hanser, H., and Ruhenstroth-Bauer, G. (1975a) Several erythrocyte populations of different mean volume in the young sheep and rat with different electrophoretic mobilities, 3rd Meeting of the European-African Division of the International Society of Hematology, London, Abstr. 18, (2).Google Scholar
  155. Valet, G., Silz, S., Metzger, H., and Ruhenstroth-Bauer, G. (1975b) Electrical sizing of liver cell nuclei by the particle beam method. Mean volume, volume distribution and electrical resistance, Acta Hepato-Gastroenterol. 22:274.Google Scholar
  156. Valet, G., Hofmann, H., and Ruhenstroth-Bauer, G. (1976) The computer analysis of volume distribution curves: Demonstrating of two erythrocyte populations of different size in the young guinea pig and analysis of the mechanism of immune lysis of cells by antibody and complement, 7. Histochem. Cytochem. 24:231.CrossRefGoogle Scholar
  157. Valet, G., Hanser, G., and Ruhenstroth-Bauer, G. (1977) Ein neues Konzept der Haematopoese im Saeugetierorganismus waehrend der Nachgeburtsphase: Nachweis mehrerer Volumenpopulationen der Erythrozyten bei Ratten, Maeusen, Meerschweinchen, Kaninchen, Schafen und Ziegen, Blut 34:413.CrossRefGoogle Scholar
  158. Valet, G., Fischer, B., Sundergeld, A., Hanser, G., Kachel, V., and Ruhenstroth-Bauer, G. (1979) Simultaneous flow cytometric DNA and volume measurements of bone marrow cells as sensitive indicator of abnormal proliferation patterns in rat leukemias, J. Histochem. Cytochem. 27:398.CrossRefGoogle Scholar
  159. van Dilla, M. A., Fulwyler, M. J., and Boone, J. U. (1967) Volume distribution and separation of normal human leukocytes, Proc. Soc. Exp. Biol. Med. 125:367.Google Scholar
  160. Velick, S., and Gorin, M. (1940) The electrical conductance of suspensions of ellipsoids and its relation to the study of avian erythrocytes, J. Gen. Physiol. 23:753.CrossRefGoogle Scholar
  161. von Behrens, W., and Edmondson, S. (1976) Comparison of techniques improving the resolution of standard Coulter cell sizing systems, J. Histochem. Cytochem. 24:247.CrossRefGoogle Scholar
  162. Wales, M., and Wilson, J. N. (1961) Theory of coincidence in Coulter counters, Rev. Sci. Instr. 32:1132.CrossRefGoogle Scholar
  163. Wales, M., and Wilson, J. N. (1962) Coincidence in Coulter counters, Rev. Sci. Instr. 33:575.CrossRefGoogle Scholar
  164. Waterman, C. S., Atkinson, E. E., Wilkins, B., Fischer, C. L., and Kimzey, S. I. (1975) Improved measurement of erythrocyte volume distribution by aperture-counter signal analysis, Clin. Chem. 21:1201.Google Scholar
  165. Weber, A., and Mueller, E. (1978) Investigations on factors influencing the accuracy of bull spermatozoa-counts with an electronic particle counter (Coulter counter), Zuchthygiene 13:97.CrossRefGoogle Scholar
  166. Weed, R. J., and Bowdler, A. J. (1967) The influence of hemoglobin concentration on the distribution pattern of the volumes of human erythrocytes, Blood 29:297.Google Scholar
  167. Wendt, G. (1958) Elektrische Felder und Wellen, in: Handbuch der Physik, Volume XVI, Springer-Verlag, Berlin, pp. 148–164.Google Scholar
  168. Wilkins, B., Fraudolig, J. E., and Fischer, C. L. (1970) An interpretation of red cell volume distributions measured by pulse height analysis, J. Assoc. Adv. Med. Instr. 4:99.Google Scholar
  169. Winter, H., and Sheard, R. P. (1965) The skewness of volume distribution curves of erythrocytes, Austr. J. Exp. Biol. Med. Sci. 43:687.CrossRefGoogle Scholar
  170. Zimmermann, U., Pilwat, G., and Riemann, F. (1974) Dielectric breakdown of cell membranes, Biophys. J. 14:881.CrossRefGoogle Scholar
  171. Zimmermann, U., Schulz, J., and Pilwat, G. (1975) Transcellular ion flow in Escherichia coli B and electrical sizing of bacteria, Biophys. J. 13:1005.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Volker Kachel
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedWest Germany

Personalised recommendations