Cell Analysis pp 111-143 | Cite as

Light Scattering Analysis of Single Cells

  • Gary C. Salzman


Light scattering is an attractive tool for flow cytometric analysis because it is an inherently nondestructive probe and can be used for the analysis and sorting of unstained, viable cells. Since every cell passing through the laser beam scatters light, it can be used in conjunction with fluorescence probes to discriminate between stained and unstained fractions of a sample.


Refractive Index Light Scatter Forward Scatter Detector Configuration Mueller Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, L. R., and Kamentsky, L. A. (1971) Machine characterization of human leukocytes by acridine orange fluorescence, Acta Cytol. 15:289.Google Scholar
  2. Aden, A. L., and Kerker, M. (1951) Scattering of electromagnetic waves from two concentric spheres, J. Appl. Phys. 22:1242.MATHCrossRefMathSciNetGoogle Scholar
  3. Almeida, S. P., and Fujii, H. (1979) Fourier transform differences and averaged similarities in diatoms, Appl. Opt. 18:1663.CrossRefGoogle Scholar
  4. Asano, S. (1979) Light scattering properties of spheroidal particles, Appl. Opt. 18:712.CrossRefGoogle Scholar
  5. Asano, S., and Sato, M. (1980) Light scattering by randomly oriented spheroidal particles, Appl. Opt. 19:962.CrossRefGoogle Scholar
  6. Atkins, P. W., and Barron, L. D. (1969) Rayleigh scattering of polarized photons by molecules, Mol. Physics 16:453.CrossRefGoogle Scholar
  7. Barber, P. W., and Yeh, C. (1975) Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Appl Opt. 14:2864.Google Scholar
  8. Barrett, D. L., King, E. B., Jensen, R. H., and Merrill, J. T. (1978) Cytomorphology of gynecologic specimens analyzed and sorted by two-parameter flow cytometry, Acta Cytol. 22:7.Google Scholar
  9. Barrett, D. L., Jensen, R. H., King, E. B., Dean, P. N., and Mayall, B. H. (1979) Flow cytometry of human gynecologic specimens using log chromomycin A3 fluorescence and lot 90° light scatter, J. Histochem. Cytochem. 27:573.CrossRefGoogle Scholar
  10. Barron, L. D., Bogaard, M. P., Buckingham, A. D. (1973) Raman scattering of circularly polarized light by optically active molecules, J. Am. Chem. Soc. 95:603.CrossRefGoogle Scholar
  11. Bartholdi, M., Salzman, G. C., Hiebert, R. D., and Kerker, M. (1980) Differential light scattering photometer for rapid analysis of single particles in flow, Appl. Opt. 19:1573.CrossRefGoogle Scholar
  12. Bickel, W. S., Davidson, J. F., Huffman, D. R., and Kilkson, R. (1976) Application of polarization effects in light scattering: A new biophysical tool, Proc. Nat. Acad. Sci. U.S.A. 73:486.CrossRefGoogle Scholar
  13. Bohren, C. F., and Huffman, D. R. (1982) Absorption and Scattering of Light by Small Particles, Wiley, New York (in press).Google Scholar
  14. Bonner, W. A., Hulett, H. R., Sweet, R. G., Herzenberg, L. A. (1972) Fluorescence activated cell sorting, Rev. Sci. Instrum. 43:404.CrossRefGoogle Scholar
  15. Born, M., and Wolf, E. (1975) Principles of Optics, 5th ed., Pergamon Press, London.Google Scholar
  16. Bracewell, B. M. (1965) The Fourier Transform and Its Applications, McGraw-Hill, San Francisco.MATHGoogle Scholar
  17. Brunsting, A., and Mullaney, P. F. (1974) Differential light scattering from spherical mammalian cells, Biophy. J. 14:439.CrossRefGoogle Scholar
  18. Bustamente, C., Maestre, M. F., and Tinoco, I., Jr. (1980a) Circular intensity differential scattering of light by helical structures. I. Theory, J. Chem. Phys. 73:4273.CrossRefGoogle Scholar
  19. Bustamente, C., Maestre, M. F., and Tinoco, I., Jr. (1980b) Circular intensity differential scattering of light by helical structures. II. Applications, J. Chem. Phys. 73:6046.CrossRefGoogle Scholar
  20. Crowell, J. M., Hiebert, R. D., Salzman, G. C., Price, B. J., Cram, L. S., and Mullaney, P. F. (1978) A light-scattering system for high-speed cell analysis, IEEE Transactions on Biomedical Engineering, BME-25:519.CrossRefGoogle Scholar
  21. Dave, J. V. (1968) Subroutine for Computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere, International Business Machines Scientific Center, Palo Alto, CA, Report 320–337.Google Scholar
  22. Debye, P. (1909) Der Lichtdruck anf Kugeln von beliebigem Material, Ann. Physik 30:57.MATHCrossRefGoogle Scholar
  23. Diamond, L. W., and Braylan, R. C. (1980) Flow analysis of DNA content and cell size in non-Hodkin’s lymphoma, Cancer Res. 40:703.Google Scholar
  24. Doukas, J. D., Ruckdeschel, J. C., and Mardiney, M. R., Jr. (1977) Quantitative and qualitative analysis of human lymphocyte proliferation to specific antigen in vitro by use of the helium neon laser, J. Immunol. Meth. 15:229.CrossRefGoogle Scholar
  25. Druger, S. D., Kerker, M., Wang, D. S., and Cooke, D. D. (1979) Light scattering by inhomogeneous particles, Appl. Opt. 18:3888.CrossRefGoogle Scholar
  26. Fikioris, J. G., and Uzunoglu, N. K. (1979) Scattering from an eccentrically stratified dielectric sphere, J. Opt. Soc. Am. 69:1359.CrossRefGoogle Scholar
  27. Fowler, B. W., and Sung, C. C. (1979) Scattering of an electromagnetic wave from dielectric bodies of irregular shape, J. Opt. Soc. Am. 69:756.CrossRefGoogle Scholar
  28. Frost, J. K., Tyrer, H. W., Pressman, N. J., Albright, C. D., Vansickel, M. H., and Gill, G. W. (1979) Automatic cell identification and enrichment in lung cancer. I. Light scatter and fluorescence parameters, J. Histochem. Cytochem. 27:545.CrossRefGoogle Scholar
  29. Genter, F. C., and Salzman, G. C. (1979) A statistical approach to the classification of biological cells from their diffraction patterns, J. Histochem. Cytochem. 27:268.CrossRefGoogle Scholar
  30. Goldschneider, I., Gordon, L. K., and Morris, R. J. (1978) Demonstration of Thy-1 antigen on pluripotent hemopoietic stem cells in the rat, J. Exp. Med. 148:1351.CrossRefGoogle Scholar
  31. Goldschneider, I., Metcalf, D., Battye, F., and Mandel, T. (1980a) Analysis of rat hemopoietic cells on the fluorescence activated cell sorter, J. Exp. Med. 152:419.CrossRefGoogle Scholar
  32. Goldschneider, I., Metcalf, D., Mandel, T., and Bollum, F. J. (1980b) Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. II. Isolation of terminal deoxynucleotidyl transferase-positive cells, J. Exp. Med. 152:438.CrossRefGoogle Scholar
  33. Goodman, J. W. (1968) Introduction to Fourier Optics, 1st ed., McGraw-Hill, San Francisco.Google Scholar
  34. Hoffman, R. A., Kung, P. C., Hansen, W. P., Goldstein, G. (1980) Simple and rapid measurement of human T lymphocytes and their subclasses in peripheral blood, Proc. Nat. Acad. Sci. U.S.A. 77:4914.CrossRefGoogle Scholar
  35. Hunt, A. J., and Huffman, D. R. (1973) A new polarization-modulated light-scattering instrument, Rev. Sci. Instrum. 44:1753.CrossRefGoogle Scholar
  36. Julius, M. H., Sweet, R. G., Fatham, C. G., and Herzenberg, L. A. (1975) Fluorescence activated cell sorting and its application, in: Mammalian Cells: Probes and Problems (C. R. Richmond, D. F. Petersen, P. F. Mullaney, and E. C. Anderson, eds.), ERDA Symposium Series CONF-731007, Tech. Information Center, Oak Ridge, TN, p. 107.Google Scholar
  37. Kamentsky, L. A., and Melamed, M. R. (1965) Spectrophotometer: New instrument for ultrarapid cell analysis, Science 150:630.CrossRefGoogle Scholar
  38. Kerker, M. (1969) The Scattering of Light and Other Electromagnetic Radiation, 1st ed., Academic Press, New York.Google Scholar
  39. Kerker, M., Cooke, D. D., Chew, H., and McNulty, P. J. (1978) Light scattering by structured spheres, J. Opt. Soc. Am. 68:592.CrossRefGoogle Scholar
  40. Koch, A. L. (1968) Theory of the angular dependence of light scattered by bacteria and similarsized biological objects, J. Theor. Biol. 18:133.CrossRefGoogle Scholar
  41. Kopp, R. E., Lisa, J., Mendelsohn, J., Pernick, B., Stone, H., and Wohlers, R. (1974) The use of coherent optical processing techniques for automatic screening of cervical cytologie samples, J. Histochem. Cytochem. 22:598.CrossRefGoogle Scholar
  42. Kopp, R. E., Lisa, J., Mendelsohn, J., Pernick, B., Stone, H., and Wohlers, R. (1976) Coherent optical processing of cervical cytologie samples, J. Histochem. Cytochem. 24:122.CrossRefGoogle Scholar
  43. Kratohvil, J. P. (1966) Calibration of light scattering instruments. IV. Corrections for reflection effects, J. Colloid Interface Sci. 21:498.CrossRefGoogle Scholar
  44. Latimer, P., Brunsting, A., Pyle, B. E., and Moore, C. (1978) Effects of asphericity on single particle scattering, Appl. Opt. 17:3152.CrossRefGoogle Scholar
  45. Lindmo, T., and Steen, H. B. (1979) Characteristics of a simple, high-resolution flow cytometer based on a new flow configuration, Biophys. J. 28:33.CrossRefGoogle Scholar
  46. Loken, M. R., and Herzenberg, L. A. (1975) Analysis of cell populations with a fluorescence activated cell sorter, Ann. N.Y. Acad. Sci. 254:163.CrossRefGoogle Scholar
  47. Loken, M. R., and Houck, D. W. (1981) Light scattered at two wavelengths can discriminate viable lymphoid cell populations on a fluorescence activated cell sorter, J. Histochem. Cytochem. 29:609.CrossRefGoogle Scholar
  48. Loken, M. R., Sweet, R. G., and Herzenberg, L. A. (1976) Cell discrimination by multiangle light scattering, J. Histochem. Cytochem. 24:284.CrossRefGoogle Scholar
  49. Lorenz, L. (1890) Lysbevaegelse i uden for en auf plane lysbelger belyst Kugle, Vidensk. Selsk. Skrifter 6:63.Google Scholar
  50. Ludlow, I. K., and Kaye, P. H. (1979) A scanning diffractometer for rapid analysis of microparticles and biological cells, J. Colloid Interface Sci. 69:571.CrossRefGoogle Scholar
  51. Maestre, M. F., and Reich, C. (1980) Contribution of light scattering to the circular dichroism of deoxyribonucleic acid films, deoxyribonucleic acid-polylysine complexes, and deoxyribonucleic acid particles in ethanolic buffers, Biochemistry 19:5214.CrossRefGoogle Scholar
  52. Meyer, R. A. (1979) Light scattering from biological cells: Dependence of backscattering radiation on membrane thickness and refractive index, Appl. Opt. 18:585.CrossRefGoogle Scholar
  53. Meyer, R. A., Haase, S. F., Podulso, S. W., and McKhan, G. M. (1974) Light scattering patterns of isolated oligodendroglia, J. Histochem. Cytochem. 22:594.CrossRefGoogle Scholar
  54. Mie, G. (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Physik 25:377.MATHCrossRefGoogle Scholar
  55. Morris, S. J., Schultens, H. A., Hellweg, M. A., Striker, G., and Jovin, T. M. (1979) Dynamics of structural changes in biological particles from rapid light scattering measurements, Appl. Opt. 18:303.CrossRefGoogle Scholar
  56. Mueller, H. (1948) The foundations of optics, J. Opt. Soc. Am. 38:661.Google Scholar
  57. Mullaney, P. F., and Dean, P. N. (1969) Cell sizing: A small-angle light scattering method for sizing particles of low relative refractive index, Appl. Opt. 8:2361.CrossRefGoogle Scholar
  58. Mullaney, P. F., and Dean, P. N. (1970) The small angle light scattering of biological cells. Theoretical considerations, Biophys. J. 10:764.CrossRefGoogle Scholar
  59. Mullaney, P. F., and Fiel, R. J. (1976) Cellular structure as revealed by visible light scattering: Studies on suspensions of red blood cell ghosts, Appl. Opt. 15:310.CrossRefGoogle Scholar
  60. Mullaney, P. F., and West, W. T. (1973) A dual-parameter flow microfluorometer for rapid cell analysis, J. Phys. E. 6:1006.CrossRefGoogle Scholar
  61. Mullaney, P. F., Van Dilla, M. A., Coulter, J. R., and Dean, P. N. (1969) Cell sizing: A light scattering photometer for rapid volume determinations, Rev. Sci. Instrum. 40:1029.CrossRefGoogle Scholar
  62. Mullaney, P. F., Crowell, J. M., Salzman, G. C., Martin, J. C., Hiebert, R. D., and Goad, C. A. (1976) Pulse-height light scatter distributions using flow-systems instrumentation, J. Histochem. Cytochem. 24:298.CrossRefGoogle Scholar
  63. Nicola, N. A., Burgess, A. W., Metcalf, D., and Battye, F. L. (1978) Separation of mouse bone marrow cells using wheat germ agglutinin affinity chromatography, Austr. J. Exp. Biol. Med. Sci. 56:663.CrossRefGoogle Scholar
  64. Nicola, N. A., Burgess, A. W., Staber, F. G., Johnson, G. R., Metcalf, D., and Battye, F. L. (1980) Differential expression of lectin receptors during hemopoietic differentiation: Enrichment for granulocyte-macrophage progenitor cells, J. Cell. Physiol. 103:217.CrossRefGoogle Scholar
  65. Pernick, B., Jost, S., Herold, R., Kopp, R. E., Mendelsohn, J., and Wohlers, R. (1978a) Screening of cervical cytological samples using coherent optical processing. Part 3. Appl. Opt. 17:43.CrossRefGoogle Scholar
  66. Pernick, B., Kopp, R. E., Lisa, J., Mendelsohn, J., Stone, H., and Wohlers, R. (1978b) Screening of cervical cytological samples using coherent optical processing. Part 1, Appl. Opt. 17:21.CrossRefGoogle Scholar
  67. Pernick, B., Wohlers, M. R., and Mendelsohn, J. (1978c) Paraxial analysis of light scattering by biological cells in a flow system. Appl. Opt. 17:3205.CrossRefGoogle Scholar
  68. Perry, R. J., Hunt, A. J., and Huffman, D. R. (1978) Experimental determinations of Mueller scattering matrices for nonspherical particles, Appl. Opt. 17:2700.CrossRefGoogle Scholar
  69. Price, B. J., Kollman, V. H., and Salzman, G. C. (1978) Light-scatter analysis of microalgae. Correlation of scatter patterns from pure and mixed asychronous cultures, Biophys. J. 22:29.CrossRefGoogle Scholar
  70. Purcell, E. M., and Pennypacker, C. R. (1973) Scattering and absorption of light by nonspherical dielectric grams, Astrophys. J. 186:705.CrossRefGoogle Scholar
  71. Reich, C., Maestre, M. F., Edmondson, S., and Gray, D. M. (1980) Circular dichroism and fluorescence-detected circular dichroism of deoxyribonucleic acid and poly [d(A-C).d(G-T)] in ethanolic solutions: A new method for estimating circular dichroic differential scattering, Biochemistry 19:5208.CrossRefGoogle Scholar
  72. Salzman, G. C., Crowell, J. M., Goad, C. A., Hansen, K. M., Hiebert, R. D., LaBauve, P. M., Martin, J. C., Ingram, M., and Mullaney, P. F. (1975a) A flow system multiangle lightscattering instrument for cell characterization, Clin. Chem. 21:1297.Google Scholar
  73. Salzman, G. C., Crowell, J. M., Martin, J. C., Trujillo, T. T., Romero, A., Mullaney, P. F., and LaBauve, P. M. (1975b) Cell classification by laser light scattering: Identification and separation of unstained leukocytes, Acta Cytol. 19:374.Google Scholar
  74. Salzman, G. C., Mullaney, P. F., and Price, B. J. (1979a) Light-scattering approaches to cell characterization, in: Flow Cytometry and Sorting, 1st ed. (M. R. Melamed, P. F. Mullaney, and M. R. Mendelsohn, eds.), John Wiley and Sons, New York.Google Scholar
  75. Salzman, G. C., Wilder, M. E., and Jett, J. H. (1979b) Light scattering with stream-in-air flow systems, J. Histochem. Cytochem. 27:264.CrossRefGoogle Scholar
  76. Schafer, I. A., Jamieson, A. M., Petrelli, M., Price, B. J., and Salzman, G. C. (1979) Multiangle light scattering flow photometry of cultured human fibroblasts: Comparison of normal cells with a mutant line containing cytoplasmic inclusions, J. Histochem. Cytochem. 27:359.CrossRefGoogle Scholar
  77. Seger, G., Achatz, M., Heinze, W., and Sinsel, F. (1977) Quantitative extraction of morphologic cell parameters from the diffraction pattern, J. Histochem. Cytochem. 25:707.CrossRefGoogle Scholar
  78. Steen, H. B. (1980) Further developments of a microscope based flow cytometer: Light scatter detection and excitation intensity compensation, Cytometry 1:26.CrossRefGoogle Scholar
  79. Steen, H. B., and Lindmo, T. (1979) Flow cytometry: A high resolution instrument for everyone, Science 204:403.CrossRefGoogle Scholar
  80. Steinkamp, J. A., Fulwyler, M. J., Coulter, J. R., Hiebert, R. D., Homey, J. L., and Mullaney, P. F. (1973) A new multiparameter separator for microscopic particles and biological cells, Rev. Sci. Instrum. 44:1301.CrossRefGoogle Scholar
  81. Steinkamp, J. A., Hansen, K. M., Wilson, J. S., and Salzman, G. C. (1977) Automated analysis and separation of cells from the respiratory tract: Preliminary characterization studies in hamsters, J. Histochem. Cytochem. 25:892.CrossRefGoogle Scholar
  82. Stohr, M., and Futterman, G. (1979) Visualization of multidimensional spectra in flow cytometry, J. Histochem. Cytochem. 27:560.CrossRefGoogle Scholar
  83. Stratton, J. A. (1941) Electromagnetic Theory, 1st ed., McGraw-Hill, New York.MATHGoogle Scholar
  84. Swartzendruber, D. E., Price, B. J., and Rall, L. B. (1979) Multiangle light-scattering analysis of murine teratocarcinoma cells, J. Histochem. Cytochem. 27:366.CrossRefGoogle Scholar
  85. Thompson, R. C., Bottinger, J. R., and Fry, E. S. (1980) Measurement of polarized light interactions via the Mueller matrix, Appl. Opt. 19:1323.CrossRefGoogle Scholar
  86. Turke, B., Seger, G., Achatz, M., Scelan, W. V. (1978) Fourier optical approach to the extraction of morphological parameters from the diffraction pattern of biological cells, Appl. Opt. 17:2754.CrossRefGoogle Scholar
  87. van de Hulst, H. C. (1957) Light Scattering by Small Particles, 1st ed., John Wiley and Sons, New York.Google Scholar
  88. van den Engh, G., and Visser, J. (1979) Light scattering properties of pluripotent and committed haemopoietic stem cells, Acta Haematol. 62:289.CrossRefGoogle Scholar
  89. van den Engh, G., Visser, J., and Trask, B. (1979) Identification of CFU-s by scatter measurements on a light activated cell sorter, in: Experimental Hematology Today 1979 (S. J. Baum and G. D. Ledney, eds.), Springer-Verlag, New York, p. 19.Google Scholar
  90. van den Engh, G., Visser, J., Bol, S., and Trask, B. (1980) Concentration of hemopoietic stem cells using a light-activated cell sorter, Blood Cells 6:1.Google Scholar
  91. Visser, J. W. M., Cram, L. S., Martin, J. C., Salzman, G. C., and Price, B. J. (1978a) Sorting of a murine granulocytic progenitor cell by use of laser light scattering measurements, in: Pulse-Cytophotometry, Part III (D. Lutz, ed.), European Press, Ghent, Belgium, p. 187.Google Scholar
  92. Visser, J., Haaijman, J., and Trask, B. (1978b) Quantitative immunofluorescence in flow cytometry, in: Immunofluorescence Related Staining Techniques (W. Knapp, K. Holubar, and G. Wick, eds.), North-Holland Biomedical Press, Amsterdam.Google Scholar
  93. Visser, J. W. M., van den Engh, G. J., and van Bekkum, D. W. (1980) Light scattering properties of murine hemopoietic cells, Blood Cells 6:391.Google Scholar
  94. Wang, D. S., and Barber, P. W. (1979) Scattering by inhomogeneous nonspherical objects, Appl. Opt. 18:1190.CrossRefGoogle Scholar
  95. Waterman, P. C. (1971) Symmetry, unitarity, and geometry in electromagnetic scattering, Phys. Rev. D3:825.Google Scholar
  96. Weil, H., and Chu, C. M. (1976) Scattering and absorption of electromagnetic radiation by thin dielectric disks, Appl. Opt. 15:1832.CrossRefGoogle Scholar
  97. Welch, R. M., and Cox, S. K. (1978) Nonspherical extinction and absorption efficiencies, Appl. Opt. 17:3159.CrossRefGoogle Scholar
  98. Wohlers, R., Mendelsohn, J., Kopp, R. E., and Pernick, B. (1978) Screening of cervical cytological samples using coherent optical processing. Part 2, Appl. Opt. 17:35.CrossRefGoogle Scholar
  99. Wyatt, P. F. (1968) Differential light scattering: A physical method for identifying living bacterial cells, Appl. Opt. 7:1879.CrossRefGoogle Scholar
  100. Zerull, R. H., Giese, R. H., and Weiss, K. (1977) Scattering functions of nonspherical dielectric and absorbing particles vs Mie theory, Appl. Opt. 16:777.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Gary C. Salzman
    • 1
  1. 1.Life Sciences Division, Los Alamos National LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations