Electrical Sizing of Cells in Suspension

  • N. B. Grover
  • S. A. Ben-Sasson
  • J. Naaman


The properties of many materials are strongly influenced by particle size, and the size of a living cell is often a reflection of its physiological state. Thus the development by Coulter (1953, 1955) of an electric transducer for detecting the size of a particle suspended in an electrolytic medium was of major importance as it provided for the first time a rapid and convenient approach to particle size analysis on large samples.


High Electric Field Dielectric Breakdown Osmotic Fragility Coulter Electronics Hydrodynamic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Sasson, S., Patinkin, D., Grover, N. B., and Doljanski, F. (1974) Electrical sizing of particles in suspensions. IV. Lymphocytes, J. Cell. Physiol. 84:205.CrossRefGoogle Scholar
  2. Ben-Sasson, S., Shaviv, R., Bentwich, Z., Slavin, S., and Doljanski, F. (1975) Osmotic behavior of normal and leukemic lymphocytes, Blood 46:891.Google Scholar
  3. Ben-Sasson, S. A., Naaman, J., and Grover, N. B. (1982) Membrane changes induced by high electric fields: Evidence for sulfhydryl group involvement, Anal. Quant. Cytol. 4:000.Google Scholar
  4. Buckhold, B., Adams, R. B., and Gregg, E. C. (1965) Osmotic adaptation of mouse lymphoblasts, Biochim. Biophys. Acta 102:600.CrossRefGoogle Scholar
  5. Cole, K. C. (1928) Electric impedence of suspensions of spheres, J. Gen. Physiol. 12:29.CrossRefGoogle Scholar
  6. Coulter Electronics (1978) Coulter Counter Medical and Biological Bibliography, Coulter Electronics Ltd., Coldharbour Lane, Harpenden, Herts., England.Google Scholar
  7. Coulter, W. H. (1953) Means for counting particles suspended in a fluid, U.S. Pat. No. 2,656,508.Google Scholar
  8. Coulter, W. H. (1955) Apparatus for studying the physical properties of a suspension of particles in a liquid medium, Br. Pat. No. 722,418.Google Scholar
  9. Doljanski, F., Ben-Sasson, S., Reich, M., and Grover, N. B. (1974) Dynamic osmotic behavior of chick blood lymphocytes, J. Cell. Physiol. 84:215.CrossRefGoogle Scholar
  10. England, J. M., Bashford, C. C., Hewer, M. G., Hughes-Jones, N. C., and Down, M. C. (1975) Simple method for automating the differential leucocyte-count, Lancet 1:492.CrossRefGoogle Scholar
  11. Fulwyler, M. J. (1965) Electronic separation of biological cells by volume, Science 150:910.CrossRefGoogle Scholar
  12. Gear, A. R. L. (1977) Erythrocyte osmotic fragility: Micromethod based on resistive-particle counting, J. Lab. Clin. Med. 90:914.Google Scholar
  13. Golibersuch, D. C. (1973) Observation of aspherical particle rotation in Poiseuille flow via the resistance pulse technique, Biophys. J. 13:265.CrossRefGoogle Scholar
  14. Grover, N. B., Naaman, J., Ben-Sasson, S., and Doljanski, F. (1969a) Electrical sizing of particles in suspensions. I. Theory, Biophys. J. 9:1398.CrossRefGoogle Scholar
  15. Grover, N. B., Naaman, J., Ben-Sasson, S., Doljanski, F., and Nadav, E. (1969b) Electrical sizing of particles in suspensions. II. Experiments with rigid spheres, Biophys. J. 9:1415.CrossRefGoogle Scholar
  16. Grover, N. B., Naaman, J., Ben-Sasson, S., and Doljanski, F. (1972) Electrical sizing of particles in suspensions. III. Rigid spheroids and red blood cells, Biophys. J. 12:1099.CrossRefGoogle Scholar
  17. Grover, N. B., Ben-Sasson, S. A., and Naaman, J. (1982) Electrical sizing of particles in suspensions. V. High electric fields, Anal. Quant. Cytol. (in press).Google Scholar
  18. Haynes, J. L. (1979) Particle counting apparatus utilizing various fluid resistors to maintain proper pressure differentials, U.S. Pat. No. 4,165,484.Google Scholar
  19. Haynes, J. L., and Shoor, B. A. (1978) Particle density measuring system, U.S. Pat. No. 4,110,604.Google Scholar
  20. Hoffman, R. A., and Britt, W. B. (1979) Flow-system measurements of cell impedence properties, J. Histochem. Cytochem. 27:234.CrossRefGoogle Scholar
  21. Irimajiri, A., Doida, Y., Hanai, T., and Inouye, A. (1978) Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases, J. Membr. Biol. 38:209.CrossRefGoogle Scholar
  22. Kachel, V. (1973) Eine elektronische Methode zur Verbesserung der Volumenauflösung des Coulter-Partikelvolumenmessverfahrens, Blut 27:270.CrossRefGoogle Scholar
  23. Kachel, V., Metzger, H., and Ruhenstroth-Bauer, G. (1970) Der Einfluss der Partikeldurchtrittsbahn auf die Volumenverteilungskurven nach dem Coulter Verfahren, Z. Gesamte Exp. Med. 153:331.CrossRefGoogle Scholar
  24. Kinosita, K., Jr., and Tsong, T. Y. (1977a) Hemolysis of human erythrocytes by a transient electric field, Proc. Nat. Acad. Sci. U.S.A. 74:1923.CrossRefGoogle Scholar
  25. Kinosita, K., Jr., and Tsong, T. Y. (1977b) Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature (London) 268:438.CrossRefGoogle Scholar
  26. Leif, R. C., Guarino, V., and Lefkove, N. (1979) The automated multiparameter analyzer for cells (AMAC) IIA, a true bridge circuit Coulter-type electronic cell volume transducer, J. Histochem. Cytochem. 27:225.CrossRefGoogle Scholar
  27. Mazumdar, M., and Kussmaul, K. L. (1967) A study of the variability due to coincident passage in an electronic blood cell counter, Biometrics 23:671.CrossRefGoogle Scholar
  28. Menke, E., Kordwig, E., Stuhlmüller, P., Kachel, V., and Ruhenstroth-Bauer, G. (1977) A volume activated cell sorter, J. Histochem. Cytochem. 25:796.CrossRefGoogle Scholar
  29. Pauly, H., and Schwan, H. P. (1966) Dielectric properties and ion mobility in erythrocytes, Biophys. J. 6:621.CrossRefGoogle Scholar
  30. Princen, L. H., and Kwolek, W. F. (1965) Coincidence corrections for particle size determinations with the Coulter Counter, Rev. Sci. Instr. 36:646.CrossRefGoogle Scholar
  31. Reif, A. E., Robinson, C. M., and Incze, J. S. (1977) Assay of immune cytolysis of lymphocytes and tumour cells by automatic determination of cell volume distribution, Immunology 33:69.Google Scholar
  32. Rosenberg, H. M., and Gregg, E. C. (1969) Kinetics of cell volume changes of murine lymphoma cells subjected to different agents in vitro, Biophys. J. 9:592.CrossRefGoogle Scholar
  33. Schulz, J., and Thorn, R. (1973) Electrical sizing and counting of platelets in whole blood, Med. Biol. Eng. 11:447.CrossRefGoogle Scholar
  34. Spielman, L., and Goren, S. L. (1968) Improving resolution in Coulter counting by hydrodynamic focusing, J. Colloid Interface Sci. 26:175.CrossRefGoogle Scholar
  35. Steen, H. B., and Lindmo, T. (1978) Cellular and nuclear volume during the cell cycle of NHIK 3025 cells, Cell Tissue Kinet. 11:69.Google Scholar
  36. Thorn, R., Hampe, A., and Sauerbrey, G. (1969) Die elektronische Volumenbestimmung von Blutkörperchen und ihre Fehlerquellen, Z. Gesamte Exp. Med. 151:331.CrossRefGoogle Scholar
  37. Tsong, T. Y., Tsong, T., Kingsley, E., and Siliciano, R. (1976) Relaxation phenomena in human erythrocyte suspensions, Biophys. J. 16:1091.CrossRefGoogle Scholar
  38. Valet, G., and Opferkuch, W. (1975) Mechanism of complement-induced cell lysis: Demonstration of a three-step mechanism of EACl-8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes, J. Immunol. 115:1028.Google Scholar
  39. Waterman, C. S., Atkinson, E. E., Jr., Wilkins, B., Jr., Fischer, C. L., and Kimzey, S. L. (1975) Improved measurements of erythrocyte volume distribution by aperture-counter signal analysis, Clin. Chem. 21:1201.Google Scholar
  40. Zimmermann, U., Schulz, J., and Pilwat, G. (1973) Transcellular ion flow in Escherichia coli B and electrical sizing of bacteria, Biophys. J. 13:1005.CrossRefGoogle Scholar
  41. Zimmermann, U., Pilwat, G., and Riemann, F. (1974) Dielectric breakdown of cell membranes, Biophys. J. 14:881.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • N. B. Grover
    • 1
  • S. A. Ben-Sasson
    • 1
  • J. Naaman
    • 1
  1. 1.The Hubert H. Humphrey Centre for Experimental Medicine and Cancer ResearchThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations