Biodegradation of Agricultural Fungicides

  • Hugh D. Sisler


Most natural organic matter decomposes rapidly to C02 and water under conditions favorable for biodegradation. However, when unfavorable conditions prevail, such as anaerobic environments, extreme pH, or very low temperature, natural organic matter persists for very long periods and material such as wood and even whole animal bodies is conserved for centuries (Kaars Sijpesteijn et al., 1977). While the rate of degradation of many organic pesticides is similar to that of natural materials, the situation with pesticides is more complicated because some molecules or their metabolites may persist even under the most favorable conditions for biological attack. A vast number of different situations prevail in respect to pesticide degradation in the environment. We should strive to develop pesticides which degrade as readily as natural products; however, even if this goal is attained, pesticide molecules or their metabolites may still persist under conditions unfavorable for biodegradation. Biodegradability, therefore, must be defined in terms of the environment to which a pesticide is subjected.


Natural Organic Matter Antifungal Compound Melon Plant Benzimidazole Fungicide Fungicide Benomyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharonson, N., and Kafkafi, U., 1975, Absorption, mobility and persistence of thiabendazole and methyl 2-benzimidazole-carbamate in soils, J. Agric. Food Chem. 23:720.PubMedCrossRefGoogle Scholar
  2. Anonymous, N., 1977, Ethylenethiourea, Pure Appl. Chem. 49:675.CrossRefGoogle Scholar
  3. Ayanaba, A., Verstraete, W., and Alexander, M., 1973, Formation of dimethylnitrosamine, a carcinogen and mutage, in soils treated with nitrogen compounds, Soil Sci. Soc. Am. Proc. 37:565.CrossRefGoogle Scholar
  4. Barnes, R. D., Bull, A. T., and Poller, R. C., 1971, Behavior of triphenyltin acetate in soil, Chem. Ind. (London), p. 204.Google Scholar
  5. Barnes, R. D., Bull, A. T., and Poller, R. C., 1973, Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin acetate) in the soil and on surfaces exposed to light, Pestic. Sci. 4:305.CrossRefGoogle Scholar
  6. Baude, F. J., Gardiner, J. A., and Han, J. C. Y., 1973, Characterization of residues on plants following foliar spray applications of benomyl, J. Agric. Food Chem. 21:1084.PubMedCrossRefGoogle Scholar
  7. Baude, F. J., Pease, H. L., and Holt, R. F., 1974, Fate of benomyl on field soil and turf, J. Agric. Food Chem. 22:413.PubMedCrossRefGoogle Scholar
  8. Beck, J., and Hansen, K. E., 1974, The degradation of quintozene, pentachlorobenzene, hexach-lorobenzene and pentachloraniline in soil, Pestic. Sci. 5:41.CrossRefGoogle Scholar
  9. Brown, A. W. A., 1978, Ecology of Pesticides, Wiley, New York.Google Scholar
  10. Burchfield, H. P., 1959, Comparative stabilities of dyrene, l-fluoro-2,4-dinitrobenzene, dichlone and captan in a silt loam soil, Contrib. Boyce Thompson Inst. 20:205.Google Scholar
  11. Chacko, C. I., Lockwood, J. L., and Zabik, M., 1966, Chlorinated hydrocarbon pesticides: Degradation by microbes, Science 154:893.CrossRefGoogle Scholar
  12. Clemons, G. P., and Sisler, H. D., 1969, Formation of a fungitoxic derivative from Benlate, Phytopathology 59:705.Google Scholar
  13. Davidse, L. C., 1976, Metabolic conversion of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans, Pestic. Biochem. Physiol. 6:538.CrossRefGoogle Scholar
  14. DeBaun, J. R., Miaullis, J. B., Knarr, J., Mihailovski, A., and Menn, J. J., 1974, The fate of N-trichloro[14C]methylthio-4-cyclohexene-l,2-dicarboximide ([14C]captan) in the rat, Xenobiotica 4:101.CrossRefGoogle Scholar
  15. Domsch, K. H., 1958, Die Wirkung von Bodenfungiciden. II. Wirkungsdauer, Z. Pflanzenkr. Pflanzenschutz 65:651.Google Scholar
  16. Douch, P. G. C., 1973, The metabolism of benomyl fungicide in mammals, Xenobiotica 3:367.PubMedCrossRefGoogle Scholar
  17. EBDC, Fungicide Assessment Team, U.S. Department of Agriculture, 1977, Assessment of ethy-lenebisdithiocarbamate (EBDC) fungicide uses in agriculture. I. An analysis of uses and their relationship to exposure, U.S. Department of Agriculture, Washington, D.C.Google Scholar
  18. Engst, R., and Raab, M., 1973, Zum Metabolismus fungizider phthalimid-Derivate in lebensmittelchemischtoxikologischer Sicht, Nahrung 17:731.PubMedCrossRefGoogle Scholar
  19. Erwin, D. C., 1977, Control of vascular pathogens, in: Antifungal Compounds, Vol. 1 (M. R. Siegel and H. D. Sisler, eds.), pp. 163–224, Marcel Dekker, New York.Google Scholar
  20. Fielding, M. J., and Rhodes, R. C., 1967, Studies with C14-labeled chloroneb fungicides in plants, Cotton Dis. Counc. Proc. 27:56.Google Scholar
  21. Fishbein, L., 1977, Toxicological aspects of fungicides, in: Antifungal Compounds, Vol. 1 (M. R. Siegel and H. D. Sisler, eds.), pp. 537–598, Marcel Dekker, New York.Google Scholar
  22. Fleeker, J. R., Lacy, H. M., Schultz, I. R., and Houkom, E. C., 1974, Persistence and metabolism of thiophanate-methyl in soil, J. Agric. Food Chem. 22:592.PubMedCrossRefGoogle Scholar
  23. Fuchs, A., and Bollen, G. J., 1975, Benomyl after seven years, in: Systemic Fungicides (H. Lyr and C. Polter, eds.), pp. 121–136, Akademie-Verlag, Berlin.Google Scholar
  24. Fuchs, A., Van den Berg, G. A., and Davidse, L. C., 1972, A comparison of benomyl and thiophanates with respect to some chemical and systemic fungitoxic characteristics, Pestic. Biochem. Physiol. 2:192.CrossRefGoogle Scholar
  25. Gardiner, J. A., Kirkland, J. J., Klopping, H. L., and Sherman, H., 1974, Fate of benomyl in animals, J. Agric. Food Chem. 22:419.PubMedCrossRefGoogle Scholar
  26. Goksøyr, J., 1955, The effect of some dithiocarbamyl compounds on the metabolism of fungi, Physiol. Plant. 8:719.CrossRefGoogle Scholar
  27. Gorbach, S., and Wagner, U., 1967, Pentachloronitrobenzene residues in potatoes, J. Agric. Food Chem. 15:654.CrossRefGoogle Scholar
  28. Gutenmann, W. H., and Lisk, D. J., 1969, Metabolic studies with chloroneb fungicide in a lactating cow, J. Agric. Food Chem. 17:1008.PubMedCrossRefGoogle Scholar
  29. Helwig, A., 1972, Microbial breakdown of the fungicide benomyl, Soil Biol. Biochem. 4:377.CrossRefGoogle Scholar
  30. Hoagland, R. E., and Frear, D. S., 1976, Behavior and fate of ethylenethiourea in plants, J. Agric. Food Chem. 24:129.PubMedCrossRefGoogle Scholar
  31. Hock, W. K., and Sisler, H. D., 1969, Metabolism of chloroneb by Rhizoctonia solani and other fungi, J. Agric. Food Chem. 17:123.CrossRefGoogle Scholar
  32. Janutolo, D. B., and Stipes, R. J., 1978, Benzimidazole fungitoxicants in Virginia soils: Movement, disappearance and effect on microorganisms, Va. Wat. Res. Cent. Bull. No. 113.Google Scholar
  33. Johnston, C.D., 1953, The in vitro reaction between tetraethylithiuram disulfide (Antabuse) and glutathione, Arch. Biochem. Biophys. 44:249.PubMedCrossRefGoogle Scholar
  34. Kaars Sijpesteijn, A., and van der Kerk, G. J. M., 1954, Investigations on organic fungicides. VIII. The biochemical mode of action of bisdithiocarbamates and diisothiocyanates, Biochim. Biophys. Acta 13:545.CrossRefGoogle Scholar
  35. Kaars Sijpesteijn, A., Dekhuijzen, H. M., Kaslander, J., Pluijger, C. W., and van der Kerk, G. J. M., 1963, Metabolism of sodium dimethyldithiocarbamate by plants and microorganisms, Meded. Landbouwhogesch. Gent. 28:597.Google Scholar
  36. Kaars Sijpesteijn, A., Luijten, J. G. A., and van der Ker, G. J. M., 1969, Organometallic fungicides, in: Fungicides, Vol. 2 (D. C. Torgeson, ed.), pp. 331–366, Academic Press, New York.Google Scholar
  37. Kaars Sijpesteijn, A., Dekhuijzen, H. M., and Vonk, J. W., 1977, Biological conversion of fungicides in plants and microorganism, in: Antifungal Compounds, Vol. 2 (M. R. Siegel and H. D. Sisler, eds.), pp. 91–147, Marcel Dekker, New York.Google Scholar
  38. Kaufman, D. D., 1972, Degradation of pesticide combinations, Pestic. Chem. 6:175.Google Scholar
  39. Kaufman, D. D., 1977, Soil-fungicide interactions, in: Antifungal Compounds, Vol. 2 (M. R. Siegel and H. D. Sisler, eds.), pp. 1–49, Marcel Dekker, New York.Google Scholar
  40. Kaufman, D. D., and Fletcher, C. L., 1973, Ethylenethiouiea degradation in soil, Abstracts of the Second International Congress on Plant Pathology, Minneapolis.Google Scholar
  41. Ko, W. H., and Farley, J. D., 1969, Conversion of pentachloronitrobenzene to pentachloroaniline in soil and the effect of these compounds on soil microorganisms, Phytopathology 59:64.Google Scholar
  42. Kuchar, E. J., Geenty, F. O., Griffith, W. P., and Thomas, R. J., 1969, Analytical studies of metabolism of terrachlor in beagle dogs, rats and plants, J. Agric. Food Chem. 17:1237.CrossRefGoogle Scholar
  43. Kumarasamy, R., and Raghu, W., 1976, Conversion of the fungicide, ziram, in rice plants, Agric. Biol. Chem. 40:297.CrossRefGoogle Scholar
  44. Lukens, R. J., and Sisler, H. D., 1958, Chemical reactions involved in the fungitoxicity of captan, Phytopathology 48:235.Google Scholar
  45. Miller, P. M., 1969, Benomyl and thiabendazole suppress root invasion by larvae of Heterodera tobacum, Phytopathology 59:1040.Google Scholar
  46. Moje, W., Munnecke, D. E., and Richardson, L. T., 1964, Carbonyl sulphide, a volatile fungi-toxicant from nabam in soil, Nature (London) 202:831.CrossRefGoogle Scholar
  47. Munnecke, D. E., 1958, The persistence of nonvoliatile diffusable fungicides in soil, Phytopathology 48:581.Google Scholar
  48. Munnecke, D. E., 1972, Factors affecting the efficacy of fungicides in soil, Annu. Rev. Phytopathology 10:375.CrossRefGoogle Scholar
  49. Munnecke, D. E., and Mickail, K. Y., 1967, Thiram persistence in soil and control of damping-off caused by Pythium ultimum, Phytopathology 57:969.Google Scholar
  50. Murthy, N. B. K., and Kaufman, D. D., 1978, Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils, J. Agric. Food Chem. 26:1151.CrossRefGoogle Scholar
  51. Nakanishi, T., and Oku, H., 1969, Metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi in relation to selective toxicity, Phytopathology 59:1761.PubMedGoogle Scholar
  52. Newsome, W. H., 1976, Residues of four ethylenebis (dithiocarbamates) and their decomposition products on field-sprayed tomatoes, J. Agric. Food Chem. 24:999.PubMedCrossRefGoogle Scholar
  53. Owens, R. G., and Blaak, G., 1960, Chemistry of the reactions of dichlone and captan with thiols, Contrib. Boyce Thompson Inst. 20:475.Google Scholar
  54. Paulson, G. D., 1977, Biological conversions of fungicides in animals, in: Antifungal Compounds, Vol. 2 (M. R. Siegel and H. D. Sisler, eds.), pp. 149–208, Marcel Dekker, New York.Google Scholar
  55. Peterson, C. A., and Edgington, L. V., 1969, Quantitative estimation of the fungicide benomyl using a bioautograph technique, J. Agric. Food Chem. 17:898.CrossRefGoogle Scholar
  56. Raghu, K., Murthy, N. B. K., Kumarasamy, R., Rao, R. S., and Sane, P. V., 1975, Fate and persistence of thiram in plants and soil, in: Proceedings of the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, pp. 137–148, International Atomic Energy Agency, Vienna.Google Scholar
  57. Ragsdale, N. N., 1977, Inhibitors of lipid synthesis, in: Antifungal Compounds, Vol. 2 (M. R. Siegel and H. D. Sisler, eds.), pp. 333–363, Marcel Dekker, New York.Google Scholar
  58. Rhodes, R. H., and Pease, H. L., 1971, Fate of chloroneb in animals, J. Agric. Food Chem. 19:750.PubMedCrossRefGoogle Scholar
  59. Rhodes, R. C., Pease, H. L., and Brantley, R. K., 1971, Fate of C14-labeled chloroneb in plants and soils, J. Agric. Food Chem. 19:745.CrossRefGoogle Scholar
  60. Richmond, D. V., and Somers, E., 1966, Studies on the fungitoxicity of captan. IV. Reactions of captan with cell thiols, Ann. Appl. Biol. 57:231.CrossRefGoogle Scholar
  61. Richmond, D. V., and Somers, E., 1968, Studies on the fungitoxicity of captan. VI. Decomposition of 35S-labeled captan by Neurospora crassa conidia, Ann. Appl. Biol. 62:35.CrossRefGoogle Scholar
  62. Ridley, W. P., Dizikes, L. J., and Woods, J. M., 1977, Biomethylation of toxic elements in the environment, Science 197:329.PubMedCrossRefGoogle Scholar
  63. Rouchaud, J. P., Decallonne, J. R., and Meyer, J. A., 1974, Metabolic fate of methyl-2-benzim-idazole carbamate in melon plants, Phytopathology 64:1513.CrossRefGoogle Scholar
  64. Rouchaud, J. P., Decallonne, J. R., and Meyer, J. A., 1977a, Metabolism of benzimidazole and 2-aminobenzimidazole in melon plants, Pestic. Sci. 8:31.CrossRefGoogle Scholar
  65. Rouchaud, J. P., Lhoest, G. J., Mercier, M. J., and Meyer, J. A., 1977b, Metabolism of benomyl in carrot, strawberry and apple, Pestic. Sci. 8:23.CrossRefGoogle Scholar
  66. Selling, H. A., Vonk, J. W., and Kaars Sijpesteijn, A., 1970, Transformation of the systemic fungicide methyl thiophanate to 2-benzimidazole carbamic acid methyl ester, Chem. Ind. (London), p. 1625.Google Scholar
  67. Serra, G., 1964, Etude de la dégradation du captane du Phaltane et du Difolatan sous l’influence de la lumière, Phytiatr. Phytopharm. 13:107.Google Scholar
  68. Sharvelle, E. G., 1961, The Nature and Uses of Modem Fungicides, Burgess, Minneapolis, Minnesota.Google Scholar
  69. Siegel, M. R., 1970, Reactions of certain trichloromethyl sulfenyl fungicides with low molecular weight thiols: In vivo studies with cells of Saccharomyces pastorianus, J. Agric. Food Chem. 18:823.PubMedCrossRefGoogle Scholar
  70. Siegel, M. R., 1973, Distribution and metabolism of methyl-2-benzimidazole carbamate, the fun-gitoxic derivative of benomyl in strawberry plants, Phytopathology 63:890.CrossRefGoogle Scholar
  71. Siegel, M. R., and Sisler, H. D., 1968, Fate of the phthalimide and trichloromethylthio (SCC13) moieties of folpet in toxic action on cells of Saccharomyces pastorianus, Phytopathology 58:1123.Google Scholar
  72. Siegel, M. R., and Zabbia, A. J., Jr., 1972, Distribution and metabolic fate of the fungicide benomyl in dwarf pea, Phytopathology 62:630.CrossRefGoogle Scholar
  73. Sims, J. J., Mee, H., and Erwin, D. C., 1969, Methyl 2-benzimidazole-carbamate, a fungitoxic compound isolated from cotton plants treated with methyl l-(butylcarbamoyl)-2-benzimidazole carbamate (benomyl), Phytopathology 59:1775.PubMedGoogle Scholar
  74. Sisler, H.D., and Cox, C.E., 1954, Effects of tetramethylthiuram disulfide on metabolism of Fusarium roseum, Am. J. Bot. 41:338.CrossRefGoogle Scholar
  75. Solei, Z., Schooley, J. M., and Edgington, L. V., 1973, Uptake and translocation of benomyl and carbendazim (methylbenzimidazol-2yl-carbamate) in the symplast, Pestic. Sci. 4:713.CrossRefGoogle Scholar
  76. Somers, E., Richmond, D. V., and Pickard, J. A., 1967, Carbonyl sulphide from the decomposition of captan, Nature (London) 215:214.CrossRefGoogle Scholar
  77. Stringer, A., and Lyons, C. H., 1974, The effect of benomyl and thiophanate-methyl on earthworm populations in apple orchards, Pestic. Sci. 5:189.CrossRefGoogle Scholar
  78. Thorne, G. D., 1973, Uptake and metabolism of chloroneb by Phaseolus vulgaris, Pestic. Biochem. Physiol. 3:137.CrossRefGoogle Scholar
  79. Thorne, G. D., and Ludwig, R. A., 1962, The Dithiocarbamates and Related Compounds, Elsevier, Amsterdam.Google Scholar
  80. Uesugi, Y., and Sisler, H. D., 1978, Metabolism of a phosphoramidate by Pyricularia oryzae in relation to tolerance and synergism by phosphorothiolate and isoprothiolane, Pestic. Biochem. Physiol. 9:247.CrossRefGoogle Scholar
  81. Ulfvarson, U., 1969, Organic mercuries, in: Fungicides, Vol. 2 (D. C. Torgeson, ed.), pp. 303–329, Academic Press, New York.Google Scholar
  82. United States Department of Agriculture, 1974, Guidelines for the Chemical Control of Plant Diseases and Nematodes, Agriculture Handbook No. 378, Washington, D.C.Google Scholar
  83. Upham, P. M., and Delp, C. J., 1973, Role of benomyl in systemic control of fungi and mites on herbaceous plants, Phytopathology 63:814.CrossRefGoogle Scholar
  84. Vonk, J. W., 1975, Chemical decomposition of bisdithiocarbamate fungicides and their metabolism by plants and microorganisms, Ph.D. Thesis, University of Utrecht.Google Scholar
  85. Wang, C. H., and Broadbent, F. E., 1973, Effect of soil treatments on losses of two chloronitro-benzene fungicides, J. Environ. Qual. 2:511.CrossRefGoogle Scholar
  86. Wiese, M. V., and Vargas, J. M., 1973, Interconversion of chloroneb and 2,5-dichloro-4-meth-oxyphenol by soil microorganisms, Pestic. Biochem. Physiol. 3:214.CrossRefGoogle Scholar
  87. Wolfe, N. L., Zepp, R. G., Doster, J. C., and Hollis, R. C., 1976, Captan hydrolysis, J. Agric. Food Chem. 24:1041.PubMedCrossRefGoogle Scholar
  88. Woodcock, D., 1977, Nonbiological conversions of fungicides, in: Antifungal Compounds, Vol. 2 (M. R. Siegel and H. D. Sisler, eds.), pp. 209–249, Marcel Dekker, New York.Google Scholar
  89. Yasuda, Y., Hashimoto, S., and Soeda, Y., 1973, Metabolism of thiophanate-methyl by pathogenic fungi and antifungal activity of its metabolites, Ann. Jpn. Phytopathol. Soc. 39:49.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Hugh D. Sisler
    • 1
  1. 1.Department of BotanyUniversity of MarylandCollege ParkUSA

Personalised recommendations