Degradation of Pesticides in the Environment by Microorganisms and Sunlight

  • Fumio Matsumura


It may be generalized that pesticide contamination problems in the environment are directly related to their persistent nature, the most important factor determining the degree of persistence being the chemical characteristics of the pesticidal compound itself.


Photochemical Reaction Microbial Metabolism Reductive Dechlorination Heptachlor Epoxide Substitute Aniline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, M. K., and Focht, D. D., 1972, Degradation of polychlorinated biphenyls by two species of Achromobacter, Can. J. Microbiol. 19:47.CrossRefGoogle Scholar
  2. Benezet, H., and Matsumura, F., 1973, Isomerization of λ-BHC to α-BHC in the environment, Nature (London) 243:480.CrossRefGoogle Scholar
  3. Castro, C. E., 1964, The rapid oxidation of iron (II) porphyrines by alkyl halides. A possible mode of intoxication of organisms by alkyl halides, J. Am. Chem. Soc. 86:2310.CrossRefGoogle Scholar
  4. Cook, J. W., 1957, In vitro destruction of some organophosphate pesticides by bovine rumen fluid, J. Agric. Food Chem. 5:859.CrossRefGoogle Scholar
  5. Crosby, D. G., and Leitis, E., 1969, Photolysis of chlorophenylacetic acids, J. Agric. Food Chem. 17:1036.PubMedCrossRefGoogle Scholar
  6. Cserjesi, A. J., and Johnson, E. L., 1972, Methylation of pentachlorophenol by Trichoderma virgatum, Can. J. Microbiol. 18:45.PubMedCrossRefGoogle Scholar
  7. DeBaun, J. R., and Menn, J. J., 1976, Sulfoxide reduction in relation to organosphosphorus insecticide detoxication, Science 191:187.PubMedCrossRefGoogle Scholar
  8. Esaac, E. G., and Matsumura, F., 1978, A novel reduction system involving flavoprotein in the rat intestine, Bull. Environ. Contam. Toxicol. 19:15.PubMedCrossRefGoogle Scholar
  9. Esaac, E. G., and Matsumura, F., 1979, Mechanisms of reductive dechlorination of DDT by rat liver microsomes, Pestic. Biochem. Physiol. 13:81.CrossRefGoogle Scholar
  10. Esaac, E. G., and Matsumura, F., 1980, Metabolism of insecticides by reductive systems, Pharmacol. Ther. 9:1.PubMedCrossRefGoogle Scholar
  11. Focht, D. D., and Alexander, M., 1970a, DDT metabolites and analogs: Ring fission by Hydro-genomonas, Science 170:91.PubMedCrossRefGoogle Scholar
  12. Focht, D. D., and Alexander, M., 1970b, Aerobic cometabolism of DDT analogues by Hydrogen-omonas sp., J. Agric. Food Chem. 19:20.CrossRefGoogle Scholar
  13. Focht, D. D., and Alexander, M., 1970c, Bacterial degradation of diphenylmenthane, a DDT model substrate, Appl. Microbiol. 20:608.PubMedGoogle Scholar
  14. French, A. L., and Hoopingarner, R. A., 1970, Dechlorination of DDT by membranes isolated from Escherichia coli, J. Econ. Entomol. 63:756.PubMedGoogle Scholar
  15. Furukawa, K., and Matsumura, F., 1975, Microbial metabolism of PCBs: Studies of the relative degradability of PCB components by Alcaligenes sp., J. Agric. Food Chem. 24:251.CrossRefGoogle Scholar
  16. Furukawa, K., Matsumura, F., and Tonomura, K., 1978, Alcaligenes and Acinetobacter strains capable of degrading polychlorinated biphenyls, Agric. Biol. Chem. 42:543.CrossRefGoogle Scholar
  17. Grumwell, J. R., and Erickson, R. H., 1973, Photolysis of parathion, O,0-diethyl-0-(4-nitrophenyl) thiophosphate. New products, J. Agric. Food Chem. 21:929.CrossRefGoogle Scholar
  18. Hill, I. R., and Wright, S. J. L., 1978, Pesticide Microbiology, Academic Press, New York.Google Scholar
  19. Ivie, G. W., and Casida, J. E., 1971a, Sensitized photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight of silica gel chromatographic plates, J. Agric. Food Chem. 19:40.Google Scholar
  20. Ivie, G. W., and Casida, J. E., 1971b, Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide chemicals exposed to sunlight on bean leaves, J. Agric. Food Chem. 19:410.CrossRefGoogle Scholar
  21. Jagnow, G., Haider, K., and Ellwardt, P. C., 1977, Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria, Arch. Microbiol. 115:285.PubMedCrossRefGoogle Scholar
  22. Kaufman, D. D., Plimmer, J. R., Iwan, J., and Klingebiel, U. I., 1972, 3,3′,4,4′-tetrachloroa-zoxybenzene from 3,4-dichloroaniline in microbial culture, J. Agric. Food Chem. 20:916.CrossRefGoogle Scholar
  23. Kearney, P. C., Kaufman, D. D., von Endt, D. W., and Guardia, F. S., 1969a, TCA metabolism by soil microorganisms, J. Agric. Food Chem. 17:1418.CrossRefGoogle Scholar
  24. Kearney, P. C., Kaufman, D. D., von Ednt, D. W., and Guardia, F. S., 1969b, Mixed chloroax-obenzene formation in soil, J. Agric. Food Chem. 17:581.CrossRefGoogle Scholar
  25. Khan, M. A. Q., 1977, Pesticides in Aquatic Environments, Plenum Press, New York.Google Scholar
  26. Mathur, S. P., and Sana, J. G., 1977, Degradation of lindane 14C on a mineral soil and an organic soil, Bull. Environ. Contam. Toxicol. 17:424.PubMedCrossRefGoogle Scholar
  27. Matsumura, F., 1974, Microbial degradation of pesticides, in: Survival in Toxic Environments (M. A. Q. Khan and J. P. Berderka, eds.), pp. 129–54, Academic Press, New York.Google Scholar
  28. Matsumura, F., Patil, K. C., and Boush, G. M., 1970, Formation of “photodieldrin” by microorganisms, Science 170:1206.PubMedCrossRefGoogle Scholar
  29. Matsumura, F., Khanvilkar, V. G., Patil, K. C., and Boush, G. M., 1971, Metabolism of endrin by certain soil microorganisms, J. Agric. Food Chem. 19:27.PubMedCrossRefGoogle Scholar
  30. Matsumura, F., Boush, G. M., and Misato, T., 1972, Environmental Toxicology of Pesticides, Academic Press, New York.Google Scholar
  31. McGuire, R. R., Zabik, M. J., Schuetz, R. D., and Flotard, R. D., 1970, Photochemistry of bioactive compounds. Photolyses of l,4,5,6,7,8,8-heptachlor-3a-4,7,7a-tetrahydro-4,7-meth-anoindene, J. Agric. Food Chem. 18:319.CrossRefGoogle Scholar
  32. Miskus, R. P., Blair, D. P., and Casida, J. E., 1965, Conversion of DDT to DDD by bovine rumen fluid, lake water, and reduced porphyrins, J. Agric. Food Chem. 13:481.CrossRefGoogle Scholar
  33. Miyamoto, J., Kitagawa, K., and Sato, Y., 1966, Metabolism of organophosphorus insecticides by Bacillus subtilis with special emphasis on sumithion, Jpn. J. Exp. Med. 36:211.PubMedGoogle Scholar
  34. Miyazaki, S., Boush, G. M., and Matsumura, F., 1969, Metabolism of 14C-Chloropropylate by Rodotorula gracilis, Appl. Microbiol. 28:212.Google Scholar
  35. Munnecke, D. M., and Hsieh, D. P. H., 1974, Microbial decontaminations of parathion and p-nitrophenol in aqueous media, Appl. Microbiol. 28:212.PubMedGoogle Scholar
  36. Owens, R. G., and Novotny, H. M., 1958, Mechanism of action of the fungicide dichlone (2,3-dichloro-l,4-naphthoquinone), Contrib. Boyce Thompson Inst. 19:463.Google Scholar
  37. Robinson, J., Richardson, A., Busch, B., and Elgar, K. E., 1966, Photoisomerization products of dieldrin, Bull. Environ. Contam. Toxicol. 1:127.CrossRefGoogle Scholar
  38. Rosen, J. D., and Carey, W. F., 1968, Preparation of the photoisomers of aldrin and dieldrin, J. Agric. Food Chem. 116:536.CrossRefGoogle Scholar
  39. Rosen, J. E., Sutherland, D. J., and Lipton, G. R., 1966, The photochemical isomerization of dieldrin and endrin and effects on toxicity, Bull. Environ. Contam. Toxicol. 4:133.CrossRefGoogle Scholar
  40. Rosen, J. D., Siewierski, M., and Winnett, G., 1970, FMN-sensitized photolysis of chloroanilines, J. Agric. Food Chem. 18:494.PubMedCrossRefGoogle Scholar
  41. Ruzo, L. O., Zabik, M. J., and Schuetz, R. D., 1974, Photochemistry of bioactive compounds, Photochemical processes of polychlorinated biphenyls, J. Am. Chem. Soc. 96:3809.PubMedCrossRefGoogle Scholar
  42. Tweedy, B. G., Loeppky, C., and Ross, J. A., 1970, Metobromuron: Acetylation of the aniline moiety as a detoxification mechanism, Science 168:482.PubMedCrossRefGoogle Scholar
  43. Ueda, K., Gaughan, L. C., and Casdia, J. E., 1974, Photodecomposition of resmethrin and related pyrethroids, J. Agric. Food Chem. 22:213.CrossRefGoogle Scholar
  44. Walker, W. W., and Stojanovic, B. J., 1973, Microbial versus chemical degradation of malathion in soil, J. Environ. Qual. 2:229.CrossRefGoogle Scholar
  45. Zabik, M. J., Leavitt, R. A., and Su, G. C. C., 1976, Photochemistry of bioactive compounds: A review of pesticide photochemistry, Annu. Rev. Entomol. 21:61.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Fumio Matsumura
    • 1
  1. 1.Pesticide Research CenterMichigan State UniversityEast LansingUSA

Personalised recommendations