Advertisement

Pesticide Metabolism in Plants Reactions and Mechanisms

  • Richard H. Shimabukuro
  • Gerald L. Lamoureux
  • D. Stuart Frear

Abstract

The use of pesticides to protect crop plants from weeds, insects, and other pests has increased steadily. In 1975 the total production of organic pesticides in the United States was 1609 million pounds (USDA, 1977). A great variety of pesticides, including herbicides, insecticides, and fungicides is applied to crop plants. Pesticides are inherently toxic and may be degraded to either toxic or nontoxic forms. Therefore, it is important to know the intermediate degradation products and the ultimate fate of pesticides in plants.

Keywords

Insoluble Residue Glutathione Conjugation Mercapturic Acid Carbamate Insecticide Amino Acid Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akram, M., Ahmad, S., and Forgash, A. J., 1978, Metabolism of phosphorothioic acid, 0,O-dimethyl-O-(6-ethoxy-2-ethyl-4-pyrimidinyl) ester (etrimfos), in bean and corn plants, J. Agric. Food Chem. 26:925.Google Scholar
  2. Andreae, W. A., and Good, N. E., 1955, The formation of indole-acetylaspartic acid in pea seedlings, Plant Physiol. 30:380.PubMedGoogle Scholar
  3. Andreev, G. K., and Amrhein, N., 1976, Mechanism of action of the herbicide 2-chloro-3(4-chlorophenyl)propionate and its methyl ester: Interaction with cell responses mediated by auxin, Physiol. Plant 37:175.Google Scholar
  4. Appleton, H. T., and Nakatsugawa, T., 1977, The toxicological significance of paraoxon deethy-lation, Pestic. Biochem. Physiol. 7:451.Google Scholar
  5. Arias, J. M., and Jacoby, W. B., 1976, Glutathione Metabolism and Function, Kroc Foundation Series, Vol. 6, Raven Press, New York.Google Scholar
  6. Arjmand, M., Hamilton, R. H., and Mumma, R. O., 1978, Metabolism of 2,4,5-trichlorophen-oxyacetic acid. Evidence for amino acid conjugates in soybean callus tissue, J. Agric. Food Chem. 26:1125.Google Scholar
  7. Bakke, J. E., Larsen, J. D., and Price, C.E., 1972a, Metabolism of atrazine and 2-hydroxyatrazine by the rat, J. Agric. Food Chem. 20:602.PubMedGoogle Scholar
  8. Bakke, J. E., Shimabukuro, R. H., Davison, K. L., and Lamoureux, G. L., 1972b, Sheep and rat metabolism of the insoluble 14C-residues present in 14C-atrazine treated sorghum, Chemosphere 1:21.Google Scholar
  9. Balba, H. M., and Still, G. G., 1977, Studies of bound residues of chloroanilines in plants, Abstract, 174th National Meeting, American Chemical Society, Chicago.Google Scholar
  10. Baldwin, B. C., 1977, Xenobiotic metabolism in plants, in: Drug Metabolism: From Microbe to Man (D. V. Parke and R. L. Smith, eds.), pp. 191–217, Taylor and Francis, London.Google Scholar
  11. Bandurski, R. S., and Schulze, A., 1977, Concentration of indole-3-acetic acid and its derivatives in plants, Plant Physiol 60:211.PubMedGoogle Scholar
  12. Bandurski, R. S., Schulze, A., and Cohen, J. D., 1977, Photoregulation of the ratio of ester to free indole-3-acetic acid, Biochem. Biophys. Res. Commun. 79:1219.PubMedGoogle Scholar
  13. Beynon, K. I., Stoydin, G., and Wright, A. N., 1972a, A comparison of the breakdown of the triazine herbicides cyanazine, atrazine and simazine in soils and maize, Pestic. Biochem. Physiol. 2:153.Google Scholar
  14. Beynon, K. I., Stoydin, G., and Wright, A. N., 1912b, The breakdown of the triazine herbicide cyanazine in wheat and potatoes grown under indoor conditions in treated soils, Pestic. Sci. 3:379.Google Scholar
  15. Beynon, K. I., Hutson, D. H., and Wright, A. N., 1973, The metabolism and degradation of vinyl phosphate insecticides, Res. Rev. 47:55.Google Scholar
  16. Beynon, K. I., Roberts, T. R., and Wright, A. N., 1974, The degradation of the herbicide ben-zoylprop ethyl following its application to wheat, Pestic. Sci. 5:429.Google Scholar
  17. Biswas, P. K., and Hamilton, W., Jr., 1969, Metabolism of trifluralin in peanuts and sweet potatoes, Weed Sci. 17:206.Google Scholar
  18. Bowes, G. W., 1972, Uptake and metabolism of 2,2-bis07-chlorophenyl)-l,l,l-trichloroethane (DDT) by marine phytoplankton and its effect on growth and chloroplast electron transport, Plant Physiol. 49:172.PubMedGoogle Scholar
  19. Boyland, E., and Chasseaud, L. F., 1969, The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis, Adv. Enzymol. 32:173.PubMedGoogle Scholar
  20. Brain, K. R., and Lines, D. S., 1977, Uptake and metabolism of aldrin in plant tissue culture, in: Plant Tissue Culture and Its Bio-Technical Application (W. Barz, E. Reinhard, and M. W. Zenk, eds.), pp. 197–203, Springer-Verlag, New York.Google Scholar
  21. Brooks, G. T., 1974, Chlorinated Insecticides, Vol. II, CRC Press, Cleveland.Google Scholar
  22. Bukovac, M. T., 1976, Herbicide entry into plants, in: Herbicides: Physiology, Biochemistry, Ecology, Vol. 1 (L. J. Audus, ed.), pp. 335–364, Academic Press, New York.Google Scholar
  23. Bull, D. L., 1972, Metabolism of organophosphorus insecticides in animals and plants, Res. Rev. 43:1.Google Scholar
  24. Bull, D. L., Whitten, C. J., and Ivie, G. W., 1976, Fate of 0-emyl-[4-(methylthio)phenyl]-S-propyl phosporodithioate (BAY NTN 9306) in cotton plants and soil, J. Agric. Food Chem. 24:601.PubMedGoogle Scholar
  25. Casida, J. E., and Lykken, L., 1969, Metabolism of organic pesticide chemicals in higher plants, Annu. Rev. Plant Physiol. 20:607.Google Scholar
  26. Casida, J. E., Kimmel, E. C., Ohkawa, H., and Ohkawa, R., 1975, Sulfoxidation of thiocarbamate herbicides and the metabolism of thiocarbamate sulfoxides in living mice and liver enzyme systems, Pestic. Biochem. Physiol. 5:1.Google Scholar
  27. Chen, Y. S., and Casida, J. E., 1978, Thiocarbamate herbicide metabolism: Microsomal oxygenase metabolism of EPTC involving mono-and dioxygenation at the sulfur and hydroxylation at each alkyl carbon, J. Agric. Food Chem. 26:263.PubMedGoogle Scholar
  28. Collett, G. F., and Pont, V., 1978, Le rôle de la cystéine dans la dé toxification d’un herbicide, CR. Acad. Sci. Ser. D 286:681.Google Scholar
  29. Crafts, A. S., and Crisp, C. E., 1971, Phloem Transport in Plants, W. H. Freeman, San Francisco.Google Scholar
  30. Crayford, J. V., and Hutson, D. H., 1972, The metabolism of the herbicide, 2-chloro-4-(ethylamino)-6-(l-cyano-l-methylethylamino)-5-triazine, in the rat, Pestic. Biochem. Physiol. 2:295.Google Scholar
  31. Crosby, D. G., 1973, The fate of pesticides in the environment, Annu. Rev. Plant Physiol. 24:467.Google Scholar
  32. Dauterman, W. C., Viado, G. B., Casida, J. E., and O’Brien, R. D., 1960, Persistence of dimethoate and metabolites following foliar application to plants, J. Agric. Food Chem. 8:115.Google Scholar
  33. Davis, D. G., Hodgson, R. H., Dusbabek, K. E., and Hoffer, B. L., 1978, The metabolism of the herbicide diphenamid (N,N-dimemyl-2,2-diphenylacetamide) in cell suspensions of soybean (Glycine max), Physiol. Plant 44:87.Google Scholar
  34. Donald, W. W., and Shimabukuro, R. H., 1980, Selectivity of diclofop-methyl between wheat and wild oat: Growth and herbicide metabolism, Physiol. Plant 49:459.Google Scholar
  35. Dorough, H. W., Whitacre, D. M., and Cardona, R. A., 1973a, Metabolism of the herbicide methazole in cotton and beans, and fate of certain of its polar metabolites in rats, J. Agric. Food Chem. 21:7.Google Scholar
  36. Dorough, H. W., 1976, Biological activity of pesticide conjugates, in: Bound and Conjugated Pesticide Residues (D. D. Kaufman, G. G. Still, G. D. Paulson, and S. K. Bandai, eds.), pp. 11–34, ACS Symposium Series 29, American Chemical Society, Washington, D.C.Google Scholar
  37. Dutton, A. J., Roberts, T. R., and Wright, A. N., 1976, Characterization of acidic conjugates of flamprop in wheat, Chemosphere 3:195.Google Scholar
  38. Dutton, A. J., Roberts, T. R., and Wright, A. N., 1976, Characterization of acidic conjugates of flamprop in wheat, Chemosphere 3:195.Google Scholar
  39. Earl, J. W., and Kennedy, I. R., 1975, Aldrin epoxidase from pea roots, Phytochemistry 14:1507.Google Scholar
  40. Eastin, E. F., 1971, Fate of fluorodifen in resistant peanut seedlings, Weed Sci. 19:261.Google Scholar
  41. El Zorgani, G. A., 1975, Residues of DDT in cottonseed after spraying with DDT and torbidan, Pestic. Sci. 6:457.Google Scholar
  42. Esser, H. O., Dupuis, G., Ebert, E., Marco, G., and Vogel, C., 1975, S-triazines, in: Herbicides: Chemistry, Degradation, and Mode of Action, Vol. 1 (P. C. Kearney and D. D. Kaufman, eds.), pp. 129–208, Marcel Dekker, New York.Google Scholar
  43. Eto, M., 1974, Organophosphorous Pesticides: Organic and Biological Chemistry, CRC Press, Cleveland.Google Scholar
  44. Fedtke, C., and Schmidt, R. R., 1977, Chlorfenprop-methyl: Its hydrolysis in vivo and in vitro and a new principle for selective herbicidal action, Weed Res. 17:233.Google Scholar
  45. Feung, C. S., Hamilton, R. H., and Witham, F. H., 1971, Metabolism of 2,4-dichlorophenoxyacetic acid by soybean cotyledon callus tissue cultures, J. Agric. Food Chem. 19:475.Google Scholar
  46. Feung, C. S., Hamilton, R. H., and Mumma, R. O., 1973, Metabolism of 2,4-dichlorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures, J. Agric. Food Chem. 21:637.PubMedGoogle Scholar
  47. Feung, C. S., Mumma, R. O., and Hamilton, R. H., 1974, Metabolism of 2,4-dichlorophenoxyacetic acid. VI. Biological properties of amino acid conjugates, J. Agric. Food Chem. 22:307.PubMedGoogle Scholar
  48. Feung, C. S., Hamilton, R. H., and Mumma, R. O., 1975, Metabolism of 2,4-dichlorophenoxyacetic acid. VII. Comparison of metabolites from five species of plant callus tissue cultures, J. Agric. Food Chem. 23:373.PubMedGoogle Scholar
  49. Feung, C. S., Hamilton, R. H., and Mumma, R. O., 1976, Metabolism of indole-3-acetic acid, III. Identification of metabolites isolated from crown gall callus tissue, Plant Physiol. 58:666.PubMedGoogle Scholar
  50. Frear, D. S., 1968, Herbicide metabolism in plants. I. Purification and properties of UDP-glucose: Arylamine N-glucosyl-transferase from soybean, Phytochemistry 7:381.Google Scholar
  51. Frear, D. S., 1975, The benzoic acid herbicides, in: Herbicides: Chemistry, Degradation, and Mode of Action, Vol. 2 (P. C. Kearny and D. D. Kaufman, eds.), pp. 541–607, Marcel Dekker, New York.Google Scholar
  52. Frear, D. S., 1976, Pesticide conjugates—glycosides, in: Bound and Conjugated Pesticide Residues (D. D. Kaufman, G. G. Still, G. D. Paulson, and S. K. Bandai, eds.), pp. 35–54, ACS Symposium Series 29, American Chemical Society, Washington, D.C.Google Scholar
  53. Frear, D. S., and Shimabukuro, R. H., 1970, Metabolism and effects of herbicides in plants, Technical Papers of FAO Int. Conf. Weed Control, pp. 560, Weed Science Society America, Champaign, Illinois.Google Scholar
  54. Frear, D. S., and Still, G. G., 1968, The metabolism of 3,4-dichloropropionanilide in plants: Partial purification and properties of an aryl acylamidase from rice, Phytochemistry 7:913.Google Scholar
  55. Frear, D. S., and Swanson, H. R., 1972, New metabolites of monuron in excised cotton leaves, Phytochemistry 11:1919.Google Scholar
  56. Frear, D. S., and Swanson, H. R., 1973, Metabolism of substituted diphenylether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.), Pestic. Biochem. Physiol. 3:473.Google Scholar
  57. Frear, D. S., and Swanson, H. R., 1974, Monuron metabolism in excised Gossypium hirsutum leaves: Aryl hydroxylation and conjugation of 4-chlorophenylurea, Phytochemistry 13:357.Google Scholar
  58. Frear, D. S., and Swanson, H. R., 1975, Metabolism of cisanilide (cis-2,5-dimethyl-l-pyrrolidi-necarboxanilide) by excised leaves and cell suspension cultures of carrot and cotton, Pestic. Biochem. Physiol. 5:73.Google Scholar
  59. Frear, D. S., Swanson, H. R., and Tanaka, F. S., 1969, N-demethylation of substituted 3-(phenyl)-1-methylureas: Isolation and characterization of a microsomal mixed function oxidase from cotton, Phytochemistry 8:2157.Google Scholar
  60. Frear, D. S., Hodgson, R. H., Shimabukuro, R. H., and Still, G. G., 1972a, Behavior of herbicides in plants, Adv. Agron. 24:328.Google Scholar
  61. Frear, D. S., Swanson, H. R., and Tanaka, F. S., 1972b, Herbicide metabolism in plants, in: Recent Advances in Phytochemistry, Vol. 5 (V. C. Runeckles and T. S. Tso, eds.), pp. 225–246, Academic Press, New York.Google Scholar
  62. Frear, D. S., Swanson, H. R., Mansager, E. R., and Wien, R. G., 1978, Chloramben metabolism in plants: Isolation and identification of glucose ester, J. Agric. Food Chem. 26:1347.Google Scholar
  63. Gaughan, L. C., and Casida, J. E., 1978, Degradation of trans- and cis-permethrin on cotton and bean plants, J. Agric. Food Chem. 26:525.Google Scholar
  64. Gorbach, S. G., Kuenzler, K., and Asshauer, J., 1977, On the metabolism of HOE-23408 OH in wheat, J. Agric. Food Chem. 25:507.Google Scholar
  65. Guroff, G., Daly, J. W., Jerina, D. M., Renson, J., Witkop, B., and Undenfriend, S., 1967, Hydroxylation-induced migration: The NIH shift, Science 157:1524.PubMedGoogle Scholar
  66. Hamilton, R. H., Hurter, J., Hall, J. K., and Ercegovich, C. D., 1971, Metabolism of 2,4-dich-lorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by bean plants, J. Agric. Food Chem. 19:480.Google Scholar
  67. Harrison, R. B., Holmes, D. C., Roburn, J., and Tatton, J. O’G., 1967, The fate of some orga-nochlorine pesticides on leaves, J. Sci. Food Agric. 18:10.PubMedGoogle Scholar
  68. Harvey, John, Jr., Han, J., and Reiser, R. W., 1978, Metabolism of oxamyl in plants, J. Agric. Food Chem. 26:529.Google Scholar
  69. Hay, J. R., 1976, Herbicide transport in plants, in: Herbicides: Physiology, Biochemistry, Ecology, Vol. 1 (L. J. Audus, ed.), pp. 365–396, Academic Press, New York.Google Scholar
  70. Hill, B. D., Stobbe, E. H., and Jones, B. L., 1978, Hydrolysis of the herbicide benzoylprop ethyl by wild oat esterases, Weed Res. 18:149.Google Scholar
  71. Hodgson, R. H., and Hoffer, B. L., 1977, Diphenamid metabolism in pepper and an ozone effect. II. Herbicide metabolite characterization, Weed Sci. 25:331.Google Scholar
  72. Hodgson, R. H., Frear, D. S., Swanson, H. R., and Regan, L. A., 1973, Alteration of diphenamid metabolism in tomato by ozone, Weed Sci. 21:542.Google Scholar
  73. Hoffer, B. L., and Hodgson, R. H., 1978, Evidence for formation of a glucosyl-malonyl ester of diphenamid in soybeans, Weed Science Society of America, Abstr. 154, Dallas.Google Scholar
  74. Hubbell, J. P., and Casida, J. E., 1977, Metabolic fate of the N,N-dialkylcarbamoyl moiety of thiocarbamate herbicides in rats and corn, J. Agric. Food Chem. 25:404.PubMedGoogle Scholar
  75. Hussain, M., Fukuto, T. R., and Reynolds, H. T., 1974, Physical and chemical basis for systemic movement of organophosphorus esters in the cotton plant, J. Agric. Food Chem. 22:225.PubMedGoogle Scholar
  76. Hutson, D. H., 1976, Glutathione conjugates, in: Bound and Conjugated Pesticide Residues (D. D. Kaufman, G. G. Still, G. D. Paulson, and S. K. Bandai, eds.), pp. 103–131, ACS Symposium Series 29, American Chemical Society, Washington, D.C.Google Scholar
  77. Jacoby, W. B., 1978, The glutathione S-transferases: A group of multifunctional detoxification proteins, Adv. Enzymol. 46:383.Google Scholar
  78. Jeffcoat, B., and Harries, W. N., 1973, Selectivity and mode of action of ethyl ( ± )-2-(N-3-benzoyl-3,4-dichloroanilino)propionate in the control of Avenu fatua in cereals, Pestic. Sci. 4:891.Google Scholar
  79. Jeffcoat, B., and Harries, W. N., 1975, Selectivity and mode of action of flamprop-isopropyl, isopropyl ( ± )-2-[N-(3-chloro-4-flurophenyl)benzamido] propionate, in the control of Avena fatua in barley, Pestic. Sci. 6:282.Google Scholar
  80. Jerina, D. M., and Daly, J. W., 1974, Arene oxides: A new aspect of drug metabolism, Science 185:573.PubMedGoogle Scholar
  81. Kaufman, D. D., Still, G. G., Paulson, G. D., and Bandai, S. K. (eds.), 1976, Bound and Conjugated Pesticide Residues, ACS Symposium Series 29, American Chemical Society, Washington, D.C.Google Scholar
  82. Kearney, P. C., and Kaufman, D. D. (eds.), 1975, Herbicides: Chemistry, Degradation, and Mode of Action, Vols. 1 and 2, Marcel Dekker, New York.Google Scholar
  83. Krueger, H. R., 1975, Phorate sulfoxidation by plant root extracts, Pestic. Biochem. Physiol. 5:396.Google Scholar
  84. Krueger, H. R., 1977, Aldicarb sulfoxidation by plant root extracts, Pestic. Biochem. Physiol. 7:154.Google Scholar
  85. Kuhr, R. J., and Casida, J. E., 1967, Persistent glycosides of metabolites of methylcarbamate insecticide chemicals formed by hydroxylation in bean plants, J. Agric. Food Chem. 15:814.Google Scholar
  86. Lamoureux, G. L., and Davison, K. L., 1975, Mercapturic acid formation in the metabolism of propachlor, CDAA, and fluorodifen in the rat, Pestic. Biochem. Physiol. 5:497.Google Scholar
  87. Lamoureux, G. L., and Frear, D. S., 1979, Pesticide metabolism in higher plants: In vitro enzyme studies, in: Xenobiotic metabolism, in vitro methods (G. D. Paulson, D. S. Frear, And E. P. Marks, eds.), pp. 77–128, ACS Symposium Series 97, American Chemical Society, Washington, D.C.Google Scholar
  88. Lamoureux, G. L., and Rusness, D. G., 1976, Pentachloronitrobenzene (PCNB) metabolism in peanuts, 172nd National Meeting, American Chemical Society, San Francisco.Google Scholar
  89. Lamoureux, G. L., and Stafford, L. E., 1977, Translocation and metabolism of perfluidone (1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl]methanesulfonamide) in peanuts, J. Agric. Food Chem. 25:512.Google Scholar
  90. Lamoureux, G. L., Shimabukuro, R. H., Swanson, H. R., and Frear, D. S., 1970, Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections, J. Agric. Food Chem. 18:81.PubMedGoogle Scholar
  91. Lamoureux, G. L., Stafford, L. E., and Tanaka, F. S., 1971, Metabolism of 2-chloro-N-isopro-pylacetanilide (propachlor) in the leaves of corn, sorghum, sugarcane and barley, J. Agric. Food Chem. 19:346.PubMedGoogle Scholar
  92. Lamoureux, G. L., Stafford, L. E., and Shimabukuro, R. H., 1972, Conjugation of 2-chloro-4,6-bis(alkylamino)-s-triazines in higher plants, J. Agric. Food Chem. 20:1004.Google Scholar
  93. Lamoureux, G. L., Stafford, L. E., Shimabukuro, R. H., and Zaylskie, R. G., 1973, Atrazine metabolism in sorghum: Catabolism of the glutathione conjugate of atrazine, J. Agric. Food Chem. 21:1020.PubMedGoogle Scholar
  94. Larsen, G. L., and Bakke, J. E., 1975, Metabolism of 2-chloro-4-cyclopropylamino-6-isopropy-lamino-s-triazine (cyprazine) in the rat, J. Agric. Food Chem. 23:388.PubMedGoogle Scholar
  95. Lay, M. M., and Casida, J. E., 1976, Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxication by elevating corn root glutathione content and glutathione S-transferase activity, Pestic. Biochem. Physiol. 6:442.Google Scholar
  96. Lay, M.M., and Casida, J.E., 1978, Involvement of glutathione and glutathione S-transferases in the action of dichloroacetamide antidotes for thiocarbamate herbicides, in: Chemistry and Action of Herbicide Antidotes (F. M. Pallos and J. E. Casida, eds.), pp. 151–160, Academic Press, New York.Google Scholar
  97. Loos, M. S., 1975, Phenoxyalkanoic acids, in: Herbicides: Chemistry, Degradation, and Mode of Action, Vol. 1 (P. C. Kearney and D. D. Kaufman, eds.), pp. 1–128, Marcel Dekker, New York.Google Scholar
  98. Makeev, A. M., Makoviechuk, A. I. U., and Chkanikov, D. C., 1977, Microsomal hydroxylation of 2,4-dichlorophenoxyacetic acid herbicide in plants, cucumbers and peas, Dokl. Akad. Nauk. SSSR 233:1222.Google Scholar
  99. Markham, A., Hartman, G. C., and Parke, D. V., 1972, Spectral evidence for the presence of cytochrome P-450 in microsomal fractions obtained from some higher plants, Biochem. J. 130:90.Google Scholar
  100. Marquis, L. Y., Shimabukuro, R. H., Stolzenberg, G. E., Feil, V. J., and Zaylskie, R. G., 1979, Metabolism and selectivity of fluchloralin in soybean roots, J. Agric. Food Chem. 27:1148.PubMedGoogle Scholar
  101. Marshall, T. C., and Dorough, H. W., 1977, Bioavailability in rats of bound and conjugated plant carbamate insecticide residues, J. Agric. Food Chem. 25:1003.PubMedGoogle Scholar
  102. Matsumura, F., and Boush, G. M., 1967, Dieldrin: Degradation by soil microorganisms, Science 156:959.PubMedGoogle Scholar
  103. Matsumura, F., Boush, G. M., and Tai, A., 1968, Breakdown of dieldrin in the soil by a microorganism, Nature (London) 219:965.Google Scholar
  104. Matsunaka, S., 1968, Propanil hydrolysis: Inhibition in rice plants by insecticides, Science 160:1360.PubMedGoogle Scholar
  105. McBain, J. B., Hoffman, L. J., and Menn, J. J., 1970, Metabolic degradation of 0-ethyl 5-phenyl ethylphosphonodithionate (dyfonate) in potato plants, J. Agric. Food Chem. 18:1139.PubMedGoogle Scholar
  106. McKinney, J. D., and Mehendale, H. M., 1973, Formation of polar metabolites from aldrin by pea and bean root preparations, J. Agric. Food Chem. 21:1079.PubMedGoogle Scholar
  107. Menzer, R. E., 1973, Biological oxidation and conjugation of pesticide chemicals, Res. Rev. 48:79.Google Scholar
  108. Menzer, R. E., and Casida, J. E., 1965, Nature of toxic metabolites formed in mammals, insects, and plants from S-(dimethoxyphosphinyloxy)-N,N-dimethyl-cis-crotonamide and its N-methyl analog, J. Agric. Food Chem. 13:102.Google Scholar
  109. Montgomery, M. L, Chang, Y. L., and Freed, V. H., 1971, Metabolism of 2,4-D by bean and corn plants, J. Agric. Food Chem. 19:1219.PubMedGoogle Scholar
  110. Müller, P. W., and Payot, P. H., 1966, Studies on the fate of C14-labeled triazine herbicides in plants, in: Isotopes in Weed Research, pp. 61–70, International Atomic Energy Agency, Vienna.Google Scholar
  111. Mumma, R. O., and Hamilton, R. H., 1976, Amino acid conjugates, in: Bound and Conjugated Pesticide Residues (D. D. Kaufman, G. G. Still, G. D. Paulson, and S. K. Bandai, eds.), pp. 68–85, ACS Symposium Series 29, American Chemical Society, Washington, D.C.Google Scholar
  112. Mumma, R. O., Khalifa, S., and Hamilton, R. H., 1971, Spectroscopic identification of metabolites of carbaryl in plants, J. Agric. Food Chem. 19:445.Google Scholar
  113. Narayan, S. T., and Lichtenstein, E. P., 1973, Influence of mineral nutrients on the penetration, translocation, and metabolism of [14C]dyfonate in pea plants, J. Agric. Food Chem. 21:851.Google Scholar
  114. Nash, R. G., Beall, M. L. Jr., and Harris, W. G., 1977, Toxaphene and l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) losses from cotton in agroecosystem chamber, J. Agric. Food Chem. 25:336.PubMedGoogle Scholar
  115. O’Brien, R. D., 1967, Insecticides: Action and Metabolism, Academic Press, New York.Google Scholar
  116. Oloff, P. C., and Lichtenstein, E. P., 1969 Epoxidation of aldrin by excised pieces of plant tissue, J. Agric. Food Chem. 17:143.Google Scholar
  117. Paulson, G. D., Jacobsen, A. M., and Still, G. G., 1975, Animal metabolism of propham (isopropyl carbanilate): The fate of residues in alfalfa when consumed by the rat and sheep, Pestic. Biochem. Physiol. 5:523.Google Scholar
  118. Pree, D. J., and Saunders, J. L., 1974, Metabolism of carbofuran in mugho pine, J. Agric. Food Chem. 22:620.PubMedGoogle Scholar
  119. Probst, G. W., Golab, T., Wright, W. L., 1975, Dinitroanilines, in: Herbicides: Chemistry, Degradation, and Mode of Action, Vol. 1 (P. C. Kearney and D. D. Kaufman, eds.), pp. 453–500, Marcel Dekker, New York.Google Scholar
  120. Rowlands, D. G., 1965, The in vitro and in vivo oxidation and hydrolysis of malathion by wheat grain esterases, J. Sci. Food Agric. 16:325.Google Scholar
  121. Rowlands, D. G., 1966, The in vitro and in vivo metabolism of dimethoate by stored wheat and sorghum grains, J. Sci. Food Agric. 17:90.PubMedGoogle Scholar
  122. Rusness, D. G., and Still, G. G., 1977, Partial purification and properties of S-cysteinyl-hydrox-ychlorpropham transferase from oat (Avena sativa, L.), Pestic. Biochem. Physiol. 7:220.Google Scholar
  123. Russell, D. W., 1971, The metabolism of aromatic compounds in higher plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control, J. Biol. Chem. 246:3870.PubMedGoogle Scholar
  124. Russell, D. W., and Conn, E. E., 1967, The cinnamic acid 4-hydroxylase of pea seedlings, Arch. Biochem. Biophys. 122:256.PubMedGoogle Scholar
  125. Ruzo, L. O., and Casida, J. E., 1977, Metabolism and toxicology of pyrethroids with dihalovinyl substitueras, Environ. Health Perspec. 21:285.Google Scholar
  126. Sanderman, H., Jr., Diesperger, H., and Scheel, D., 1977, Metabolism of xenobiotics by plant cell cultures, in: Plant Tissue Culture and Its Biotechnological Application (W. Barz, E. Reinhard, and M. H. Zenk, eds.), pp. 178–196, Springer-Verlag, New York.Google Scholar
  127. Shimabukuro, R. H., 1967, Atrazine metabolism and herbicidal selectivity, Plant Physiol. 42:1269.PubMedGoogle Scholar
  128. Shimabukuro, R. H., and Walsh, W. C., 1979, Xenobiotic metabolism in plants: In vitro tissue, organ and isolated cell techniques, in: Xenobiotic metabolism: In vitro methods (G. D. Paulson, D. S. Frear, and E. P. Marks, eds.), pp. 3–34, ACS Symposium Series 97, American Chemical Society, Washington, D.C.Google Scholar
  129. Shimabukuro, R. H., Lamoureux, G. L., Swanson, H. R., Walsh, W. C., Stafford, L. E., and Frear, D. S., 1973a, Metabolism of substituted diphenylether herbicides in plants. II. Identification of a new fluorodifen metabolite, 5-(2-nitro-4-trifluoromethylphenyl)-glutathione in peanuts, Pestic. Biochem. Physiol. 3:483.Google Scholar
  130. Shimabukuro, R. H., Walsh, W. C., Lamoureux, G. L., and Stafford, L. E., 1973b, Atrazine metabolism in sorghum: Chloroform-soluble intermediates in the N-dealkylation and glutathione conjugation pathways, J. Agric. Food Chem. 21:1031.PubMedGoogle Scholar
  131. Shimabukuro, R. H., Walsh, W. C., Stolzenberg, G. E., and Olson, P. A., 1975, Metabolism of fluorodifen in peanuts, Weed Science Society of America, Abst. 171, Washington, D.C.Google Scholar
  132. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A., 1976a, The role of coleoptile on baioan selectivity between wild oat and wheat, Pestic. Biochem. Physiol. 6:115.Google Scholar
  133. Shimabukuro, R. H., Walsh, W. C., Stolzenberg, G. E., and Olson, P. A., 1976b, Metabolism of fluorodifen to S-(2-nitro-4-trifluoromethylphenyl-N-malonylcysteine in peanuts, Weed Science Society of America, Abstr. 196, Denver.Google Scholar
  134. Shimabukuro, R. H., Lamoureux, G. L., and Frear, D. S., 1978a, Glutathione conjugation: A mechanism for herbicide detoxication and selectivity in plants, in: Chemistry and Action of Herbicide Antidotes (F. M. Pallos and J. E. Casida, eds.), pp. 133–149, Academic Press, New York.Google Scholar
  135. Shimabukuro, M. A., Shimabukuro, R. H., Nord, W. S., and Hoerauf, R. A., 1978b, Physiological effects of methyl 2-(4-[2,4-dichlorophenoxy]phenoxy)propanoate on oat, wild oat and wheat, Pestic. Biochem. Physiol. 8:199.Google Scholar
  136. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A., 1979, Metabolism and selectivity of diclofop-methyl in wild oat and wheat, J. Agric. Food Chem. 27:615.PubMedGoogle Scholar
  137. Still, G. G., 1968, Metabolism of 3,4-dichloropropionanilide in plants: The metabolic fate of the 3,4-dichloroaniline moiety, Science 159:992.PubMedGoogle Scholar
  138. Still, G. G., and Kuzerian, O., 1967, Enzyme detoxication of 3′,4′-dichloropropionanilide in rice and barnyard grass, a factor in herbicide selectivity, Nature (London) 216:799.Google Scholar
  139. Still, G. G., and Mansager, E. R., 1972, Aryl hydroxylation of isopropyl-3-chlorocarbanilate by soybean plants, Phytochemistry 11:515.Google Scholar
  140. Still, G. G., and Mansager, E. R., 1973, Soybean shoot metabolism of isopropyl-3-chlorocarbanilate: Ortho and para aryl hydroxylation, Pestic. Biochem. Physiol. 3:87.Google Scholar
  141. Still, G. G., and Rusness, D. G., 1977, 5-cysteinyl-hydroxychlorpropham: Formation of the S-cysteinyl conjugate of isopropyl-3′-chloro-4′-hydroxycarbanilate in oat (Avena sativa L.), Pestic. Biochem. Physiol. 7:210.Google Scholar
  142. Still, G. G., Rusness, D. G., and Mansager, E. R., 1974, Carbanilate herbicides and their metabolic products: Their effect on plant metabolism, in: Mechanism of Pesticide Action (G. K. Kohn, ed.), pp. 117–129, ACS Symposium Series 2, American Chemical Society, Washington, D.C.Google Scholar
  143. Strang, R. H., and Rogers, R. L., 1974, Behavior and fate of two phenylpyridazinone herbicides in cotton, corn and soybean, J. Agric. Food Chem. 22:1119.PubMedGoogle Scholar
  144. Sumner, D. D., Cassidy, J. E., and Marco, G. J., 1976, Metabolism of profluralin in soybeans, Weed Science Society of America, Abst. 33, Denver.Google Scholar
  145. Swanson, C. R., and Swanson, H. R., 1968, Inhibition of degradation of monuron in cotton leaf tissue by carbamate insecticides, Weed Sci. 16:481.Google Scholar
  146. Thiman, K. V., 1977, Hormone Action in the Whole Life of Plants, University of Massachusetts Press, Amherst, Mass.Google Scholar
  147. Thomas E. W., Loughman, B. C., and Powell, R. G., 1964, Metabolic fate of some chlorinated phenoxyacetic acids in the stem tissue of Avena sativa, Nature (London) 204:286.Google Scholar
  148. Thompson, R. P., 1974, A comparative study on the fate of cyanazine and atrazine in plants, Ph.D. Thesis, University of Illinois, Xerox University Microfilms, Ann Arbor, Michigan.Google Scholar
  149. United States Department of Agriculture, 1977, Agricultural Stabilization and Conservation Service, Pestic. Rev., July 1976.Google Scholar
  150. Upshall, D. G., and Goodwin, T. W., 1964, Biochemical investigations into the susceptibility of barley varieties of DDT, J. Sci. Food Agric. 15:846.Google Scholar
  151. Wain, R. L., and Smith, M. S., 1976, Selectivity in relation to metabolism, in: Herbicides: Physiology, Biochemistry, Ecology (L. J. Audus, ed.), pp. 279–302, Academic Press, New York.Google Scholar
  152. Williams, R. T., 1959, Detoxication Mechanisms: The Metabolism and Detoxication of Drugs, Toxic Substances and Other Organic Compounds, Chapman and Hall, London.Google Scholar
  153. Woolhouse, H. W., 1974, Longevity and senescence in plants, Sei. Progr. 61:123.Google Scholar
  154. Wright, T. H., Rieck, C. E., and Harger, T. R., 1975, Metabolism of profluralin in peanuts and soybeans, Weed Sci. Soc. Am. Abstr. No. 169.Google Scholar
  155. Yih, R. Y., McRae, D. H., and Wilson, H. F., 1968, Metabolism of 3′,4′-dichloropropionanilide: 3,4-dichloroaniline-lignin complex in rice plants, Science 161:376.PubMedGoogle Scholar
  156. Yu, S. J., Kiigemagi, U., and Terriere, L. C., 1971, Oxidative metabolism of aldrin and isodrin by bean root fractions, J. Agric. Food Chem. 19:5.PubMedGoogle Scholar
  157. Zenk, M. H., 1961, l-0-(Indole-3-acetyl)-beta-D-glucose, a new compound in the metabolism of indole-3-acetic acid in plants, Nature (London) 191:493.Google Scholar
  158. Zimmerman, M. H., and Milburn, J. A. (eds.), 1975, Transport in plants. I. Phloem transport, in: Encyclopedia of Plant Physiology (N.S.), Vol. 1, Springer-Verlag, Heidelberg.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard H. Shimabukuro
    • 1
  • Gerald L. Lamoureux
    • 1
  • D. Stuart Frear
    • 1
  1. 1.U.S. Department of Agriculture, Science and Education AdministrationAgricultural Research, Metabolism and Radiation Research LaboratoryFargoUSA

Personalised recommendations