Skip to main content

Degradation of Pesticides by Animals

  • Chapter
Biodegradation of Pesticides

Abstract

Once a pesticide enters the animal body through ingestion, inhalation, or dermal absorption, it is subject to metabolism by a variety of mechanisms. The types of chemical or biochemical transformations a pesticide may undergo in the animal are varied, and knowledge of the fate of these toxicants in animals contributes to a better understanding of their advantages and limitations for specific use situations. This is an important consideration since the almost universal usage of wide varieties of pesticides may result in the exposure of man and other nontarget organisms on a regular basis. The effect of this exposure on animals depends upon many factors such as the concentration and chemical composition of the pesticide, the species of animal, and the sex and age of the animal. While complete coverage of the fate of pesticides in animals exceeds the intent of the present presentation, a general discussion of the biochemistry of pesticides in animals is necessary if one is to gain even the slightest appreciation of the complexity of the many factors involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison, R. F., and Willis, D. E., 1978, The metabolism by rainbow trout (Slamo gairdnerii) of p,p′-(l4C) DDT and some of its possible degradation products labeled with 14C, Toxicol. Appl. Pharmacol. 43(2):303.

    Article  PubMed  CAS  Google Scholar 

  • Ando, M., Nakagawa, M., Nakamura, T., and Tomita, K., 1975, Metabolism of Isoxathion, 0,0-diethyl O-(5-phenyl-3-isoxazolyl)phosphorothioate in the rats, Agric. Biol. Chem. 30(4):803.

    Article  Google Scholar 

  • Bedford, C. T., Crayford, J. V., Hutson, D. H. and Wiggins, D. E., 1978, An example of the oxidative de-esterification of an isopropyl ester. Its role in the metabolism of the herbicide flamprop-iso-propyl, Xenobiotica 8(6):383.

    Article  PubMed  CAS  Google Scholar 

  • Benson, W. R., 1969, The chemistry of pesticides, Ann. N.Y. Acad. Sci. 160:7.

    Article  PubMed  CAS  Google Scholar 

  • Berenbom, M., and Young, L., 1951, Biochemical studies of toxic agents. 3. The isolation of 1-and 2-naphthylsulphuric acid and 1-and 2-naphthylglucuronide from the urine of rats dosed with 1-and 2-naphthol, Biochem. J. 49:165.

    PubMed  CAS  Google Scholar 

  • Boyland, E., and Chasseaud, L. F., 1969, The rate of glutathione and glutathine-5-transferase in mercapturic acid biosynthesis, Adv. Enzymol. 32:173.

    PubMed  CAS  Google Scholar 

  • Bradway, D. E., and Shafik, T. M., 1977, Malathion exposure studies. Determination of mono-and dicarboxylic acids and alkyl phosphates in urine, J. Agric. Food Chem. 25(6): 1342.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, G. T., 1974, Chlorinated Insecticides, Vol. II, CRC Press, Cleveland.

    Google Scholar 

  • Brooks, G. T., and Harrison, A., 1969, Hydration of HEOD (dieldrin) and the heptachlor epoxides by microsomes from the livers of pigs and rabbits, Bull. Environ. Contam. Toxicol. 4:352.

    Article  CAS  Google Scholar 

  • Capel, I. D., Millburn, P. and Williams, R. T., 1974, The conjugation of 1-and 2-naphthols and other phenols in the cat and pig, Xenobiotica 4:601.

    PubMed  CAS  Google Scholar 

  • Casida, J. E., and Lykken, L., 1969, Metabolism of organic pesticide chemicals in higher plants, Annu. Rev. Plant Physiol. 20:606.

    Article  Google Scholar 

  • Dauterman, W. C., 1971, Biological and non-biological modifications of organophosphorus compounds, Bull. W.H.O. 44:133.

    PubMed  CAS  Google Scholar 

  • Davidow, B., and Radomski, J. L., 1953, Isolation of an epoxide metabolite from fat tissues of dogs fed heptachlor, J. Pharmacol. Exp. Ther. 107:259.

    CAS  Google Scholar 

  • Dodgson, K. S., and Rose, F. A., 1970, Sulfoconjugation and sulfohydrolysis, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. I (W. Fishman, ed.), pp. 239–325, Academic Press, New York.

    Google Scholar 

  • Dorough, H. W., 1976, Biological activity of pesticide conjugates, in: Bound and Conjugated Pesticide Residues (D. Kaufman, G. Still, G. Paulson and S. Bandai, eds.), pp. 11–35, ACS American Chemical Society, Washington, D.C. Symposium Series 29.

    Chapter  Google Scholar 

  • Dorough, H. W., 1979a, Metabolism of insecticides by conjugation mechanisms, Pharmacol. Ther. 4:433.

    Article  PubMed  CAS  Google Scholar 

  • Dorough, H. W., 1979b, Conjugation reactions of pesticides and their metabolites with sugars, in: Advances in Pesticide Science, Part 3 (H. Geissbuhler, ed.), pp. 526–536, Pergamon Press, New York.

    Google Scholar 

  • Duggan, D. E., Baldwin, J. J., Alison, B. H., and Rhodes, R. E., 1974, N-glucoside formation as a detoxification mechanism in mammals, J. Pharmacol. Exp. Ther. 190:563.

    PubMed  CAS  Google Scholar 

  • Eisenbrand, G., Ungerer, O., and Preussmann, R., 1974, Rapid formation of carcinogenic N-nitrosamine by interaction of nitrite with fungicides derived from dithiocarbamic acid in vitro under simulated gastric conditions and in vivo in the rat stomach, Food Cosmet. Toxicol. 12:229.

    Article  PubMed  CAS  Google Scholar 

  • Elespuru, R. K., and Lijinsky, W., 1973, The formation of carcinogenic nitroso compounds from nitrite and some types of agricultural chemicals, Food Cosmet. Toxicol. 11:807.

    PubMed  CAS  Google Scholar 

  • Eto, M., 1974, Organophosphorus Pesticides: Organic and Biological Chemistry, CRC Press, Cleveland.

    Google Scholar 

  • Florkin, M., and Stotz, E. H., 1973, Comprehensive Biochemistry, Vol. 13, Elsevier, New York.

    Google Scholar 

  • Fukuto, T. R., and Metcalf, R. L., 1969, Metabolism of insecticides in plants and animals, Ann. N.Y. Acad. Sci. 160:97.

    Article  PubMed  CAS  Google Scholar 

  • Hornish, R. E., and Nappier, J. L., 1978, Excretion and metabolism of 3,4,5-tribromo-N,N-a-trimethyl-lH-pyrazole-l-acetamide in the rat, J. Agric. Food Chem. 26(5): 1083.

    Article  PubMed  CAS  Google Scholar 

  • Huhtanen, K., and Dorough, H. W., 1976, Isomerization and Beckmann rearrangement reactions in the metabolism of methomyl in rats, Pest. Biochem. Phys. 6:571.

    Article  CAS  Google Scholar 

  • Hunt, L. M., Chamberlain, W. F., Gilbert, B. N., Hopkins, D. E., and Gingrich, Q. R., 1977, Absorption, excretion, and metabolism of nitrogen by a sheep, J. Agric. Food Chem. 24(5): 1062.

    Article  Google Scholar 

  • Hutson, P. H., 1976, Glutathione conjugates, in: Bound and Conjugated Pesticide Residues (D. Kaufman, G. Still, G. Paulson and S. Bandai, eds.), pp. 103–131, ACS Symposium Series 29, American Chemical Society, Washington D.C.

    Chapter  Google Scholar 

  • Hutson, D. H., Hoadley, E. C., Griffiths, M. H., and Donninger, C., 1970, Mercapturic acid formation in the metabolism of 2-chloro-4-ethylamino-6-(l-methyl-l-cyanothylamino)-S-tria-zine in the rat, J. Agric. Food. Chem. 78(3):507.

    Article  Google Scholar 

  • Jenner, P., and Testa, B., 1978, Novel pathways in drug metabolism, Xenobiotica 8(1):1.

    Article  PubMed  CAS  Google Scholar 

  • Kuhr, R. J., 1971, The formation and importance of carbamate insecticide metabolites as terminal residues, Pure Appl. Chem. Suppl. 1:199.

    Google Scholar 

  • Kuhr, R. J., and Dorough, H. W., 1976, Carbamate Insecticides: Chemistry, Biochemistry, and Toxicology, CRC Press, Cleveland.

    Google Scholar 

  • Kurihara, N., Tanaka, K., and Nakajima, M., 1977, Pathways of chlorophenyl-mercapturic acids formation in biodegradation of lindane, Agric. Biol. Chem. 41(7): 1317.

    Article  CAS  Google Scholar 

  • Kurtz, D. A., and George, J. L., 1977, DDT metabolism in Pennsylvania white-tail deer, in: Fate of Pesticides in Large Animals (G. Ivie and H. Dorough, eds.), pp. 193–215, Academic Press, New York.

    Google Scholar 

  • Lijinsky, W., and Schmahl, D., 1978, Carcinogenesis by nitroso derivatives of methylcarbamate insecticides and other nitrosamides in rats and mice, Int. Agency Res. Cancer Sci. Publ. No. 19, pp. 495–501.

    Google Scholar 

  • Mandel, H. W., 1971, Pathways of drug biotransformation: Biochemical conjugations, in: Fundamentals of Drug Metabolism and Drug Disposition (B. LaDu, H. Mandel and E. Way, eds.), pp. 149–186, Williams and Wilkins, Baltimore.

    Google Scholar 

  • March, R. B., Metcalf, R. L., Fukuto, T. R., and Maxon, M. G., 1955, Metabolism of Systox in the white mouse and American cockroach, J. Econ. Entomol. 48:355.

    CAS  Google Scholar 

  • Matsumura, F., 1975, Toxicology of Insecticides, Plenum Press, New York.

    Book  Google Scholar 

  • Melnikov, N. N., 1971, Chemistry of Pesticides, p. 59, Springer-Verlag, New York.

    Book  Google Scholar 

  • Menn, J. J., and Still, G. G., 1977, Metabolism of insecticides and herbicides in higher plants, Crit. Rev. Toxicol. 5:3.

    Article  Google Scholar 

  • Menzie, C. M., 1969, Metabolism of Pesticides, U. S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Miettinen, T. A., and Leskinen, E., 1970, Glucuronic acid pathway, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. I (W. Fishman, ed.), pp. 157–237, Academic Press, New York.

    Google Scholar 

  • Mirvish, S. S., 1975, Formation of N-nitroso compounds: Chemistry, kinetics, and in vivo occurr-ances, Toxicol. Appl. Pharmacol. 31:325.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsugawa, T., and Morelli, M. A., 1976, Microsomal oxidation and insecticide metabolism, in: Insecticide Biochemistry and Physiology (C. F. Wilkinson, ed.), pp. 80–100, Plenum Press, New York.

    Google Scholar 

  • Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1969, Oxidative degradation of diazinon by rat liver microsomes, Biochem. Pharmacol. 18:685.

    Article  PubMed  CAS  Google Scholar 

  • Nye, D. E., Hurst, H. E., and Dorough, H. W., 1976, Fate of Croneton (2-ethylthiomethylphenyl W-methylcarbamate) in rats, J. Agric. Food Chem. 24(2):371.

    Article  PubMed  CAS  Google Scholar 

  • Parke, D. V., 1968, The Biochemistry of Foreign Compounds, Pergamon Press, Oxford.

    Google Scholar 

  • Quistad, G. B., Staiger, L. E., and Schooley, D. A., 1978, Environmental degradation of the miticide cyclopropate (hexadecyl cyclopropane carboxylate). Beagle dog metabolism, J. Agric. Food Chem. 26(1):76.

    Article  PubMed  CAS  Google Scholar 

  • Rickard, R., and Dorough, H. W., 1978, In vivo synthesis of 1-naphthyl N-methylnitrosocarbamate (nitrosocarbaryl) in the rat and guinea pig, Pharmacologist 20(3): 146.

    Google Scholar 

  • Seiler, J. P., 1977, Nitrosation in vitro and in vivo by sodium nitrite, and mutagenicity of nitrogenous pesticides, Mutat. Res. 48:225.

    Article  PubMed  CAS  Google Scholar 

  • Sen, N. P., Donaldson, B. A., and Charbonneau, C., 1975, Formation of nitrosodimethylamine from the interaction of certain pesticides and nitrite, International Agency for Research on Cancer. IARC Scientific Publication No. 9, pp. 75–79.

    Google Scholar 

  • Smith, J. N., 1968, The comparative metabolism of xenobiotics, Adv. Comp. Physiol. Biochem. 3:173.

    PubMed  CAS  Google Scholar 

  • Sundroik, G., Hutzinger, O., Safe, S. and Platonow, N., 1977, The metabolism of p,p′-DDT and p,p′-DDE in the pig, in: Fate of Pesticides in Large Animals (G. Ivie and H. Dorough, eds.), pp. 175–182, Academic Press, New York.

    Google Scholar 

  • Tashiro, S., and Matsumura, F., 1978, Metabolism of trans-nonachlor and related chlordane components in rat and man, Arch. Environ. Contam. Toxicol. 7:113.

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama, M., Takeda, M., Suzuki, T., and Yoshikawa, K., 1975, Mutagenicity of nitroso derivatives of N-methylcarbamate insecticides in microbiological method, Bull. Environ. Contam. Toxicol. 14:389.

    Article  PubMed  CAS  Google Scholar 

  • Usui, K., Shishido, T., and Fukami, J., 1977, Glutathione 5-transferases of rat liver active on organophosphorus triesters, Agric. Biol. Chem. 41(12):2491.

    Article  CAS  Google Scholar 

  • Wilkinson, C. F. (ed.), 1976, Insecticide Biochemistry and Physiology, Plenum Press, New York.

    Google Scholar 

  • Williams, R. T., 1967, The biogenesis of conjugation and detoxification products, in: Biogenesis of Natural Compounds (P. Bernfeld, ed.), pp. 427–474, Pergamon Press, Oxford.

    Google Scholar 

  • Williams, R. T., 1971, Species variation in drug biotransformations, in: Fundamentals of Drug Metabolism and Drug Disposition (B. LaDu, H. Mandel and E. Way, eds.), pp. 187–205, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Wolfe, N. L., Fepp, R. D., Gordon, J. A., and Fincher, R. C., 1976, N-Nitrosamine formation from atrazine, Bull. Environ. Contam. Toxicol. 15:342.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Dorough, H.W., Ballard, S.K. (1982). Degradation of Pesticides by Animals. In: Matsumura, F., Murti, C.R.K. (eds) Biodegradation of Pesticides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4088-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4088-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4090-4

  • Online ISBN: 978-1-4684-4088-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics