Degradation of Pesticides by Animals

  • H. Wyman Dorough
  • Sue K. Ballard


Once a pesticide enters the animal body through ingestion, inhalation, or dermal absorption, it is subject to metabolism by a variety of mechanisms. The types of chemical or biochemical transformations a pesticide may undergo in the animal are varied, and knowledge of the fate of these toxicants in animals contributes to a better understanding of their advantages and limitations for specific use situations. This is an important consideration since the almost universal usage of wide varieties of pesticides may result in the exposure of man and other nontarget organisms on a regular basis. The effect of this exposure on animals depends upon many factors such as the concentration and chemical composition of the pesticide, the species of animal, and the sex and age of the animal. While complete coverage of the fate of pesticides in animals exceeds the intent of the present presentation, a general discussion of the biochemistry of pesticides in animals is necessary if one is to gain even the slightest appreciation of the complexity of the many factors involved.


Glucuronic Acid Hippuric Acid Organophosphorus Pesticide Heptachlor Epoxide Mercapturic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison, R. F., and Willis, D. E., 1978, The metabolism by rainbow trout (Slamo gairdnerii) of p,p′-(l4C) DDT and some of its possible degradation products labeled with 14C, Toxicol. Appl. Pharmacol. 43(2):303.PubMedCrossRefGoogle Scholar
  2. Ando, M., Nakagawa, M., Nakamura, T., and Tomita, K., 1975, Metabolism of Isoxathion, 0,0-diethyl O-(5-phenyl-3-isoxazolyl)phosphorothioate in the rats, Agric. Biol. Chem. 30(4):803.CrossRefGoogle Scholar
  3. Bedford, C. T., Crayford, J. V., Hutson, D. H. and Wiggins, D. E., 1978, An example of the oxidative de-esterification of an isopropyl ester. Its role in the metabolism of the herbicide flamprop-iso-propyl, Xenobiotica 8(6):383.PubMedCrossRefGoogle Scholar
  4. Benson, W. R., 1969, The chemistry of pesticides, Ann. N.Y. Acad. Sci. 160:7.PubMedCrossRefGoogle Scholar
  5. Berenbom, M., and Young, L., 1951, Biochemical studies of toxic agents. 3. The isolation of 1-and 2-naphthylsulphuric acid and 1-and 2-naphthylglucuronide from the urine of rats dosed with 1-and 2-naphthol, Biochem. J. 49:165.PubMedGoogle Scholar
  6. Boyland, E., and Chasseaud, L. F., 1969, The rate of glutathione and glutathine-5-transferase in mercapturic acid biosynthesis, Adv. Enzymol. 32:173.PubMedGoogle Scholar
  7. Bradway, D. E., and Shafik, T. M., 1977, Malathion exposure studies. Determination of mono-and dicarboxylic acids and alkyl phosphates in urine, J. Agric. Food Chem. 25(6): 1342.PubMedCrossRefGoogle Scholar
  8. Brooks, G. T., 1974, Chlorinated Insecticides, Vol. II, CRC Press, Cleveland.Google Scholar
  9. Brooks, G. T., and Harrison, A., 1969, Hydration of HEOD (dieldrin) and the heptachlor epoxides by microsomes from the livers of pigs and rabbits, Bull. Environ. Contam. Toxicol. 4:352.CrossRefGoogle Scholar
  10. Capel, I. D., Millburn, P. and Williams, R. T., 1974, The conjugation of 1-and 2-naphthols and other phenols in the cat and pig, Xenobiotica 4:601.PubMedGoogle Scholar
  11. Casida, J. E., and Lykken, L., 1969, Metabolism of organic pesticide chemicals in higher plants, Annu. Rev. Plant Physiol. 20:606.CrossRefGoogle Scholar
  12. Dauterman, W. C., 1971, Biological and non-biological modifications of organophosphorus compounds, Bull. W.H.O. 44:133.PubMedGoogle Scholar
  13. Davidow, B., and Radomski, J. L., 1953, Isolation of an epoxide metabolite from fat tissues of dogs fed heptachlor, J. Pharmacol. Exp. Ther. 107:259.Google Scholar
  14. Dodgson, K. S., and Rose, F. A., 1970, Sulfoconjugation and sulfohydrolysis, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. I (W. Fishman, ed.), pp. 239–325, Academic Press, New York.Google Scholar
  15. Dorough, H. W., 1976, Biological activity of pesticide conjugates, in: Bound and Conjugated Pesticide Residues (D. Kaufman, G. Still, G. Paulson and S. Bandai, eds.), pp. 11–35, ACS American Chemical Society, Washington, D.C. Symposium Series 29.CrossRefGoogle Scholar
  16. Dorough, H. W., 1979a, Metabolism of insecticides by conjugation mechanisms, Pharmacol. Ther. 4:433.PubMedCrossRefGoogle Scholar
  17. Dorough, H. W., 1979b, Conjugation reactions of pesticides and their metabolites with sugars, in: Advances in Pesticide Science, Part 3 (H. Geissbuhler, ed.), pp. 526–536, Pergamon Press, New York.Google Scholar
  18. Duggan, D. E., Baldwin, J. J., Alison, B. H., and Rhodes, R. E., 1974, N-glucoside formation as a detoxification mechanism in mammals, J. Pharmacol. Exp. Ther. 190:563.PubMedGoogle Scholar
  19. Eisenbrand, G., Ungerer, O., and Preussmann, R., 1974, Rapid formation of carcinogenic N-nitrosamine by interaction of nitrite with fungicides derived from dithiocarbamic acid in vitro under simulated gastric conditions and in vivo in the rat stomach, Food Cosmet. Toxicol. 12:229.PubMedCrossRefGoogle Scholar
  20. Elespuru, R. K., and Lijinsky, W., 1973, The formation of carcinogenic nitroso compounds from nitrite and some types of agricultural chemicals, Food Cosmet. Toxicol. 11:807.PubMedGoogle Scholar
  21. Eto, M., 1974, Organophosphorus Pesticides: Organic and Biological Chemistry, CRC Press, Cleveland.Google Scholar
  22. Florkin, M., and Stotz, E. H., 1973, Comprehensive Biochemistry, Vol. 13, Elsevier, New York.Google Scholar
  23. Fukuto, T. R., and Metcalf, R. L., 1969, Metabolism of insecticides in plants and animals, Ann. N.Y. Acad. Sci. 160:97.PubMedCrossRefGoogle Scholar
  24. Hornish, R. E., and Nappier, J. L., 1978, Excretion and metabolism of 3,4,5-tribromo-N,N-a-trimethyl-lH-pyrazole-l-acetamide in the rat, J. Agric. Food Chem. 26(5): 1083.PubMedCrossRefGoogle Scholar
  25. Huhtanen, K., and Dorough, H. W., 1976, Isomerization and Beckmann rearrangement reactions in the metabolism of methomyl in rats, Pest. Biochem. Phys. 6:571.CrossRefGoogle Scholar
  26. Hunt, L. M., Chamberlain, W. F., Gilbert, B. N., Hopkins, D. E., and Gingrich, Q. R., 1977, Absorption, excretion, and metabolism of nitrogen by a sheep, J. Agric. Food Chem. 24(5): 1062.CrossRefGoogle Scholar
  27. Hutson, P. H., 1976, Glutathione conjugates, in: Bound and Conjugated Pesticide Residues (D. Kaufman, G. Still, G. Paulson and S. Bandai, eds.), pp. 103–131, ACS Symposium Series 29, American Chemical Society, Washington D.C.CrossRefGoogle Scholar
  28. Hutson, D. H., Hoadley, E. C., Griffiths, M. H., and Donninger, C., 1970, Mercapturic acid formation in the metabolism of 2-chloro-4-ethylamino-6-(l-methyl-l-cyanothylamino)-S-tria-zine in the rat, J. Agric. Food. Chem. 78(3):507.CrossRefGoogle Scholar
  29. Jenner, P., and Testa, B., 1978, Novel pathways in drug metabolism, Xenobiotica 8(1):1.PubMedCrossRefGoogle Scholar
  30. Kuhr, R. J., 1971, The formation and importance of carbamate insecticide metabolites as terminal residues, Pure Appl. Chem. Suppl. 1:199.Google Scholar
  31. Kuhr, R. J., and Dorough, H. W., 1976, Carbamate Insecticides: Chemistry, Biochemistry, and Toxicology, CRC Press, Cleveland.Google Scholar
  32. Kurihara, N., Tanaka, K., and Nakajima, M., 1977, Pathways of chlorophenyl-mercapturic acids formation in biodegradation of lindane, Agric. Biol. Chem. 41(7): 1317.CrossRefGoogle Scholar
  33. Kurtz, D. A., and George, J. L., 1977, DDT metabolism in Pennsylvania white-tail deer, in: Fate of Pesticides in Large Animals (G. Ivie and H. Dorough, eds.), pp. 193–215, Academic Press, New York.Google Scholar
  34. Lijinsky, W., and Schmahl, D., 1978, Carcinogenesis by nitroso derivatives of methylcarbamate insecticides and other nitrosamides in rats and mice, Int. Agency Res. Cancer Sci. Publ. No. 19, pp. 495–501.Google Scholar
  35. Mandel, H. W., 1971, Pathways of drug biotransformation: Biochemical conjugations, in: Fundamentals of Drug Metabolism and Drug Disposition (B. LaDu, H. Mandel and E. Way, eds.), pp. 149–186, Williams and Wilkins, Baltimore.Google Scholar
  36. March, R. B., Metcalf, R. L., Fukuto, T. R., and Maxon, M. G., 1955, Metabolism of Systox in the white mouse and American cockroach, J. Econ. Entomol. 48:355.Google Scholar
  37. Matsumura, F., 1975, Toxicology of Insecticides, Plenum Press, New York.CrossRefGoogle Scholar
  38. Melnikov, N. N., 1971, Chemistry of Pesticides, p. 59, Springer-Verlag, New York.CrossRefGoogle Scholar
  39. Menn, J. J., and Still, G. G., 1977, Metabolism of insecticides and herbicides in higher plants, Crit. Rev. Toxicol. 5:3.CrossRefGoogle Scholar
  40. Menzie, C. M., 1969, Metabolism of Pesticides, U. S. Department of the Interior, Fish and Wildlife Service.Google Scholar
  41. Miettinen, T. A., and Leskinen, E., 1970, Glucuronic acid pathway, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. I (W. Fishman, ed.), pp. 157–237, Academic Press, New York.Google Scholar
  42. Mirvish, S. S., 1975, Formation of N-nitroso compounds: Chemistry, kinetics, and in vivo occurr-ances, Toxicol. Appl. Pharmacol. 31:325.PubMedCrossRefGoogle Scholar
  43. Nakatsugawa, T., and Morelli, M. A., 1976, Microsomal oxidation and insecticide metabolism, in: Insecticide Biochemistry and Physiology (C. F. Wilkinson, ed.), pp. 80–100, Plenum Press, New York.Google Scholar
  44. Nakatsugawa, T., Tolman, N. M., and Dahm, P. A., 1969, Oxidative degradation of diazinon by rat liver microsomes, Biochem. Pharmacol. 18:685.PubMedCrossRefGoogle Scholar
  45. Nye, D. E., Hurst, H. E., and Dorough, H. W., 1976, Fate of Croneton (2-ethylthiomethylphenyl W-methylcarbamate) in rats, J. Agric. Food Chem. 24(2):371.PubMedCrossRefGoogle Scholar
  46. Parke, D. V., 1968, The Biochemistry of Foreign Compounds, Pergamon Press, Oxford.Google Scholar
  47. Quistad, G. B., Staiger, L. E., and Schooley, D. A., 1978, Environmental degradation of the miticide cyclopropate (hexadecyl cyclopropane carboxylate). Beagle dog metabolism, J. Agric. Food Chem. 26(1):76.PubMedCrossRefGoogle Scholar
  48. Rickard, R., and Dorough, H. W., 1978, In vivo synthesis of 1-naphthyl N-methylnitrosocarbamate (nitrosocarbaryl) in the rat and guinea pig, Pharmacologist 20(3): 146.Google Scholar
  49. Seiler, J. P., 1977, Nitrosation in vitro and in vivo by sodium nitrite, and mutagenicity of nitrogenous pesticides, Mutat. Res. 48:225.PubMedCrossRefGoogle Scholar
  50. Sen, N. P., Donaldson, B. A., and Charbonneau, C., 1975, Formation of nitrosodimethylamine from the interaction of certain pesticides and nitrite, International Agency for Research on Cancer. IARC Scientific Publication No. 9, pp. 75–79.Google Scholar
  51. Smith, J. N., 1968, The comparative metabolism of xenobiotics, Adv. Comp. Physiol. Biochem. 3:173.PubMedGoogle Scholar
  52. Sundroik, G., Hutzinger, O., Safe, S. and Platonow, N., 1977, The metabolism of p,p′-DDT and p,p′-DDE in the pig, in: Fate of Pesticides in Large Animals (G. Ivie and H. Dorough, eds.), pp. 175–182, Academic Press, New York.Google Scholar
  53. Tashiro, S., and Matsumura, F., 1978, Metabolism of trans-nonachlor and related chlordane components in rat and man, Arch. Environ. Contam. Toxicol. 7:113.PubMedCrossRefGoogle Scholar
  54. Uchiyama, M., Takeda, M., Suzuki, T., and Yoshikawa, K., 1975, Mutagenicity of nitroso derivatives of N-methylcarbamate insecticides in microbiological method, Bull. Environ. Contam. Toxicol. 14:389.PubMedCrossRefGoogle Scholar
  55. Usui, K., Shishido, T., and Fukami, J., 1977, Glutathione 5-transferases of rat liver active on organophosphorus triesters, Agric. Biol. Chem. 41(12):2491.CrossRefGoogle Scholar
  56. Wilkinson, C. F. (ed.), 1976, Insecticide Biochemistry and Physiology, Plenum Press, New York.Google Scholar
  57. Williams, R. T., 1967, The biogenesis of conjugation and detoxification products, in: Biogenesis of Natural Compounds (P. Bernfeld, ed.), pp. 427–474, Pergamon Press, Oxford.Google Scholar
  58. Williams, R. T., 1971, Species variation in drug biotransformations, in: Fundamentals of Drug Metabolism and Drug Disposition (B. LaDu, H. Mandel and E. Way, eds.), pp. 187–205, Williams and Wilkins, Baltimore.Google Scholar
  59. Wolfe, N. L., Fepp, R. D., Gordon, J. A., and Fincher, R. C., 1976, N-Nitrosamine formation from atrazine, Bull. Environ. Contam. Toxicol. 15:342.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • H. Wyman Dorough
    • 1
  • Sue K. Ballard
    • 1
  1. 1.Department of Entomology and Graduate Center for ToxicologyUniversity of KentuckyLexingtonUSA

Personalised recommendations