Advertisement

Essential Structural Features and Orientation of Cytochrome b5 in Membranes

  • Philipp Strittmatter
  • Harry A. Dailey

Abstract

It is clear the cytochrome b 5 serves as a mobile electron carrier or shuttle to provide reducing equivalents for a number of oxidation-reduction reactions that utilize cytoplasmically generated reduced pyridine nucleotides as electron sources. Thus, two flavoproteins, NADH cytochrome b 5 reductase (Spatz and Strittmatter, 1973) and NADH cytochrome P-450 reductase (Oshino et al., 1971; Enoch and Strittmatter, 1979a), reduce the membrane-bound heure protein rapidly, the former with a turnover number of 30,000 min−1 at 30°C (Spatz and Strittmatter, 1973) and the latter at 7000 min−1 at 33°C (Enoch and Strittmatter, 1979a). Reduced cytochrome b 5 is the direct electron donor for stearyl-CoA desaturase (Δ9 fatty acyl CoA desaturase) (Holloway and Wakil, 1970; Oshino and Omura, 1973; Holloway and Katz, 1972; Strittmatter et al., 1974; Enoch et al., 1976), and may participate in the reduction of cytochrome P-450 as well (Hildebrandt and Estabrook, 1972; Lau et al., 1974; Saesame et al., 1974; Imai and Sato, 1977). In addition, the microsomal heure protein has been implicated as the reductant in the Δ6 desaturation of fatty acids (Okayasu et al., 1977; Lee et al., 1977), cholesterol biosynthesis (Reddy et al., 1977), plasmalogen biosynthesis (Paultanf et al., 1974), and more recently in the elongation of fatty acids (Keyes et al., 1979). Both the relatively large and nonstoichiometric amount of cytochrome b 5 in endoplasmic reticulum relative to any one of the enzymes with which it interacts, and direct evidence that interaction with NADH cytochrome b 5 reductase in prepared phospholipid and microsomal vesicles is diffusion limited (Strittmatter and Rogers, 1975; Rogers and Strittmatter, 1974) indicate that the translational movement of the heme protein within membrane bilayers is a crucial functional feature of this electron carrier.

Keywords

Heme Protein COOH Terminus Tyrosyl Residue Lysyl Residue Tryptophanyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou, P. Y., and Fasman, G. D. (1977a). Trends Biochem. Sci. 2, 128–131.CrossRefGoogle Scholar
  2. Chou, P. Y., and Fasman, G. D. (1977b). J. Mol. Biol. 115, 135–175.CrossRefGoogle Scholar
  3. Dailey, H. A., and Strittmatter, P. (1978). J. Biol. Chem. 253, 8203–8209.Google Scholar
  4. Dailey, H. A., and Strittmatter, P. (1979). J. Biol. Chem. 254, 5388–5396.Google Scholar
  5. Dailey, H. A., and Strittmatter, P. (1980). J. Biol. Chem. 255, 5184–5189.Google Scholar
  6. Dailey, H. A., and Strittmatter, P. (1981a). J. Biol. Chem. 256, 1677–1680.Google Scholar
  7. Dailey, H. A., and Strittmatter, P. (1981b). J. Biol. Chem. 256, 3951–3955.Google Scholar
  8. Enoch, H. G., and Strittmatter, P. (1979a). J. Biol. Chem. 254, 8976–8981.Google Scholar
  9. Enoch, H. G., and Strittmatter, P. (1979b). Proc. Natl. Acad. Sci. USA 76, 145–149.CrossRefGoogle Scholar
  10. Enoch, H. G., Catala, A., and Strittmatter, P. (1976). J. Biol. Chem. 251, 5095–5103.Google Scholar
  11. Enoch, H. G., Fleming, P. J., and Strittmatter, P. (1979). J. Biol. Chem. 254, 6483–6488.Google Scholar
  12. Fleming, P. J., and Strittmatter, P. (1978). J. Biol. Chem. 253, 8198–8202.Google Scholar
  13. Fleming, P. J., Dailey, H. A., Corcoran, D., and Strittmatter, P. (1978). J. Biol. Chem. 253, 5359–5372.Google Scholar
  14. Fleming, P. J., Koppel, D. E., Lau, A. L. Y., and Strittmatter, P. (1979). Biochemistry 18, 5458–5464.CrossRefGoogle Scholar
  15. Hildebrandt, A., and Estabrook, R. W. (1971). Arch. Biochem. Bophys. 143, 66–79.CrossRefGoogle Scholar
  16. Holloway, P. W., and Katz, J. T. (1972). Biochemistry 11, 3689–3696.CrossRefGoogle Scholar
  17. Holloway, P. W., and Wakil, S. J. (1970). J. Biol, Chem. 245, 1862–1865.Google Scholar
  18. Hopfield, J. J. (1974). Proc. Natl. Acad. Sci. USA 71, 3640–3644.CrossRefGoogle Scholar
  19. Imai, Y., and Sato, R. (1977). Biochem. Biophys. Res. Commun. 75, 420–426.CrossRefGoogle Scholar
  20. Keyes, S. R., Alfano, J. A., Jansson, I., and Cinti, D. L. (1979). J. Biol. Chem. 254, 7778–7784.Google Scholar
  21. Koppel, D. E., Fleming, P., and Strittmatter, P. (1979). Biochemistry 18, 5450–5457.CrossRefGoogle Scholar
  22. Lau, A. Y. H., West, S. B., Vore, M., Ryan, D., and Levin, W. (1974). J. Biol. Chem. 249, 6701–6709.Google Scholar
  23. Lee, T. C., Baker, R. C., Stephens, N., and Snyder, F. (1977). Biochim. Biophys. Acta 489, 25–31.Google Scholar
  24. Loverde, A., and Strittmatter, P. (1968). J. Biol. Chem. 243, 5779–5787.Google Scholar
  25. Mathews, F. S. (1976). In The Enzymes of Biological Membranes (A. Martonosi, ed.), Vol. 4, pp. 143–198, Plenum Press, New York.Google Scholar
  26. Ng, S., Smith, M.B., Smith, H.T., and Millett, F. (1977). Biochemistry 16, 4975–4978.CrossRefGoogle Scholar
  27. Okayasu, T., Ono, T., Shinojima, K., and Imai, Y. (1977). Lipids 12, 267–271.CrossRefGoogle Scholar
  28. Oshino, N., and Omura, T. (1973). Arch. Biochem. Biophys. 157, 395–404.CrossRefGoogle Scholar
  29. Oshino, N., Imai, Y., and Sato, R. (1971). J. Biochem. (Tokyo) 69, 155–167.Google Scholar
  30. Paultanf, F., Prough, R. A., Masters, B. S. S., and Johnston, J. M. (1974). J. Biol. Chem. 249, 2661–2662.Google Scholar
  31. Reddy, V. R., Kupfer, P., and Caspi, E. (1977). J. Biol. Chem. 252, 2797–2801.Google Scholar
  32. Rogers, M. J., and Strittmatter, P. (1974). J. Biol. Chem. 249, 5565–5569.Google Scholar
  33. Salemme, F. R. (1976). J. Mol. Biol. 102, 563–568.CrossRefGoogle Scholar
  34. Sasame, H. A., Thorgeirsson, S.S., Mitchell, J.R., and Gillette, J. R. (1974). Life Sci. 14, 35–46.CrossRefGoogle Scholar
  35. Spatz, L., and Strittmatter, P. (1971). Proc. Natl. Acad. Sci. USA 68, 1042–1046.CrossRefGoogle Scholar
  36. Spatz, L., and Strittmatter, P. (1973). J. Biol. Chem. 248, 793–799.Google Scholar
  37. Strittmatter, P., and Rogers, M. J. (1975). Proc. Natl. Acad. Sci. USA 72, 2658–2661.CrossRefGoogle Scholar
  38. Strittmatter, P., Rogers, M. J., and Spatz, L. (1972). J. Biol. Chem. 247, 7188–7194.Google Scholar
  39. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R. (1974). Proc. Natl. Acad. Sci. USA 71, 4565–4569.CrossRefGoogle Scholar
  40. Tanford, C., and Reynolds, J. A. (1976). Biochim. Biophys. Acta 457, 133–170.Google Scholar
  41. Vaz, W. L. C., Austin, R. H., and Vogel, H. (1979). Biophys. J. 26, 415–426.CrossRefGoogle Scholar
  42. Vermilion, J. L., and Coon, M. J. (1978). J. Biol. Chem. 253, 8812–8819.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Philipp Strittmatter
    • 1
  • Harry A. Dailey
    • 1
  1. 1.Department of BiochemistryUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations