Hormonal Control of Calcium Fluxes in Rat Liver

  • Fyfe L. Bygrave
  • Peter H. Reinhart
  • Wayne M. Taylor


The physiological responses of a number of hormones in a range of tissues are closely associated with the redistribution of intracellular Ca“. This redistribution appears to involve changes in the rate of Ca’ transport in subcellular organelles known to contain appreciable ”pools“ of Ca” (Claret-Berthon et al.,1977) and may result in an alteration in either the cytoplasmic or the intraorganellar Cat+ concentration. As most mammalian cell types contain many Ca2+-dependent reactions (Carafoli and Crompton, 1978), the hormonal regulation of Ca2+ transport activity in subcellular organelles may have an important role in mediating the responses to the hormones. Following a brief account of current information about mitochondrial and microsomal Ca2+ transport activities, this review proceeds to consider our understanding of how a-adrenergic agonists and glucagon may regulate these activities and examines the possible role this regulation may play in mediating cellular hormone responses. The discussion is purposely confined to a consideration of liver tissue only.


Hormonal Control Perfuse Liver Subcellular Organelle Mammalian Cell Type Mitochondrial Adenine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Althaus-Saltzmann, M., Carafoli, E., and Jakob, A. (1980). Eur. J. Biochem. 106, 241–248.CrossRefGoogle Scholar
  2. Andia-Waltenbaugh, A. M., Lam, A., Hummel, L., and Friedmann, N. (1980). Biochim. Biophys. Acta 630, 165–175.CrossRefGoogle Scholar
  3. Ash, G. R., and Bygrave, F. L. (1977). FEBS Lett. 78, 166–168.CrossRefGoogle Scholar
  4. Babcock, D. F., Chen, J.-L. J., Yip, B. P., and Lardy, H. A. (1979). J. Biol. Chem. 254, 8117–8120.Google Scholar
  5. Barritt, G. J., Parker, J. C., and Wadsworth, J. C. (1981). J. Physiol., 312, 29–55.Google Scholar
  6. Becker, G. L., Fiskum, G., and Lehninger, A. L. (1980). J. Biol. Chem. 255, 9009–9012.Google Scholar
  7. Blackmore, P. F., Dehaye, J.-P., and Exton, J. H. (1979). J. Biol. Chem. 254, 6944–6950.Google Scholar
  8. Bygrave, F. L. (1978a). Biochem. J. 170, 87–91.Google Scholar
  9. Bygrave, F. L. (1978b). Biol. Rev. Cambridge Philos. Soc. 53, 43–79.CrossRefGoogle Scholar
  10. Carafoli, E., and Crompton, M. (1978). Curr. Top. Membr. Transp. 10, 151–216.CrossRefGoogle Scholar
  11. Carafoli, E., Gavinales, M., Affolter, H., Tuena de Gomez-Puyou, M., and Gomez-Puyou, A. (1980). Cell Calcium 1, 255–265.CrossRefGoogle Scholar
  12. Claret-Berthon, B., Claret, M., and Mazet, J. L. (1977). J. Physiol. 272, 529–552.Google Scholar
  13. Denton, R. M., and McCormack, J. G. (1980). FEBS Lett. 119, 1–8.CrossRefGoogle Scholar
  14. Fain, J. N., and Garcia-Sainz, J. A. (1980). Life Sci. 26, 1183–1194.CrossRefGoogle Scholar
  15. Garrison, J. C. (1978). J. Biol. Chem. 253, 7091–7100.Google Scholar
  16. Halestrap, A. P. (1978). Biochem. J. 172, 399–405.Google Scholar
  17. Hems, D. A., McCormack, J. G., and Denton, R. M. (1978). Biochem. J. 176, 627–629.Google Scholar
  18. Hughes, B. P., and Barritt, G. J. (1978). Biochem. J. 176, 295–304.Google Scholar
  19. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y. (1980). J. Biol. Chem. 255, 2273–2276.Google Scholar
  20. Kneer, N. M., Wagner, M. J., and Lardy, H. A. (1979). J. Biol. Chem. 254, 12160–12168.Google Scholar
  21. Lynch, T. J., and Cheung, W. Y. (1979). Arch. Biochem. Biophys. 194, 165–170.CrossRefGoogle Scholar
  22. Moore, L., Chen, T., Knapp, H. R., and Landon, E. J. (1975). J. Biol. Chem. 250, 4562–4568.Google Scholar
  23. Murphy, E., Coll, K., Rich, T. L., and Williamson, J. R. (1980). J. Biol. Chem. 255, 6600–6608.Google Scholar
  24. Nicholls, D. G., and Crompton, M. (1980). FEBS Lett. III, 261–268.CrossRefGoogle Scholar
  25. Pershadsingh, H. A., Landt, M., and McDonald, J. M. (1980). J. Biol. Chem. 255, 8983–8986.Google Scholar
  26. Poggioli, J., Berthon, B., and Claret, M. (1980). FEBS Lett. 115, 243–246.CrossRefGoogle Scholar
  27. Prpic, V., and Bygrave, F. L. (1980). J. Biol. Chem. 255, 6193–6199.Google Scholar
  28. Prpic, V., Spencer, T. L., and Bygrave, F. L. (1978). Biochem. J. 176, 705–714.Google Scholar
  29. Racker, E. (1980). Fed. Proc. 39, 2422–2426.Google Scholar
  30. Reinhart, P. H., and Bygrave, F. L. (1981). Biochem. J., 194, 541–549.Google Scholar
  31. Siess, E. A., and Wieland, O. H. (1980). Eur. J. Biochem. 110, 203–210.CrossRefGoogle Scholar
  32. Sugden, M. C., Ball, A. J., llic, V., and Williamson, D. H. (1980). FEBS Lett. 116, 37–40.CrossRefGoogle Scholar
  33. Tada, M., Okmori, F., Yamada, M., and Abe, H. (1979). J. Biol. Chem. 254, 319–326.Google Scholar
  34. Taylor, W. M., Prpic, V., Exton, J. H., and Bygrave, F. L. (1980a). Biochem. J. 188, 443–450.Google Scholar
  35. Taylor, W. M., Reinhart, P. H., Hunt, N. H., and Bygrave, F. L. (1980b). FEBS Lett. 112, 92–96.CrossRefGoogle Scholar
  36. Taylor, W. M., Reinhart, P. H., and Bygrave, F. L. (1981). Proc. Aust. Biochem. Soc. 14, 42.Google Scholar
  37. Titheradge, M. A., Stringer, J. L., and Haynes, R. C. (1979). Eur. J. Biochem. 102, 117–124.CrossRefGoogle Scholar
  38. Tuena de Gomez-Puyou, M., Gavilanes, M., Gomez-Puyou, A., and Ernster, L. (1980). Biochim. Biophys. Acta 592, 396–405.CrossRefGoogle Scholar
  39. Yamazaki, R. K., Mickey, D. L., and Storey, M. (1980). Biochim. Biophys. Acta 592, 1–12.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Fyfe L. Bygrave
    • 1
  • Peter H. Reinhart
    • 1
  • Wayne M. Taylor
    • 1
  1. 1.Department of Biochemistry, Faculty of ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations