Advertisement

The Transport of Ca2+ by Mitochondria

  • Ernesto Carafoli

Abstract

Most of the present interest in the field of mitochondrial Ca2+ transport is focused on the concept that the influx and efflux of Ca2+ occur via independent routes (Carafoli and Crompton, 1978; Pushkin et al.,1976; see Carafoli, 1979, for a review). The idea that Ca2+ is continuously released from mitochondria was implicit in the early experiments of Drahota et al. (1965) on the steady-state maintenance of the accumulated Ca2+ in mitochondria, and in the more recent finding of Stücki and Ineichen (1974) that a portion of the normal State 4 respiration is due to the energy-dissipating reuptake of the lost Ca2+. However, that the exit of Cat+ was not due to the reversal of the uptake route, but proceeded through an independent pathway, was first indicated by experiments carried out by Rossi and colleagues some years ago (1973), in which it was shown that Ca2+ could be released from liver mitochondria in the presence of ruthenium red, i.e., under conditions in which the uptake pathway is blocked. This finding provided the experimental tool for most of the later experiments on the independence of the uptake and release pathway, which eventually led to the proposal of the “mitochondrial Ca2+ cycle” (Carafoli, 1979). It is obvious, indeed, that there would be no “cycle” if Ca2+ were taken up and released through the same route. In retrospect, it is now clear that the proposal that the uptake route operates essentially as a one-way process, and does not mediate the release of Ca2+, had no alternative. Ca2+ uptake is driven, without charge compensation, by the transmembrane potential maintained by respiration (Rottenberg and Scarpa, 1974; Heaton and Nicholls, 1976; Crompton and Heid, 1978). Reversal of the uptake pathway would require extensive oscillations in the transmembrane potential, a highly improbable event in view of the central role of the potential in mitochondrial function.

Keywords

Liver Mitochondrion Transmembrane Potential Heart Mitochondrion Pyridine Nucleotide Uptake Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åkerman, K. E. O., Wikström, M. K. F., and Saris, N. O. (1977). Biochim. Biophys. Acta 464, 287–294. Carafoli, E. (1975). Mol. Cell. Biochem. 8, 133–140.Google Scholar
  2. Carafoli, E. (1979). FEBS Lett. 104, 1–5.CrossRefGoogle Scholar
  3. Carafoli, E., and Crompton, M. (1978). Curr. Top. Membr. Transp. 10, 152–216.Google Scholar
  4. Carafoli, E., and Sottocasa, G. L. (1974). In Dynamics of Energy Transducing Membranes (L. Ernster, R. W. Estabrook, and E. C. Slater, eds.), pp. 455–469, Elsevier, Amsterdam.Google Scholar
  5. Carafoli, E., Crovetti, F., and Ceccarelli, D. (1973). Arch. Biochem. Biophys. 154, 40–46.CrossRefGoogle Scholar
  6. Carafoli, E., Tiozoo, R., Lugli, G., Crovetti, F., and Kratzing, C. (1974). J. Mol. Cell. Cardiol. 6, 361–371. Crompton, M., and Heid, I. (1978). Eur. J. Biochem. 91, 599–608.Google Scholar
  7. Crompton, M., Capano, M., and Carafoli, E. (1976). Eur. J. Biochem. 69, 453–462.CrossRefGoogle Scholar
  8. Crompton, M., Künzi, M., and Carafoli, E. (1977). Eur. J. Biochem. 79, 549–588.CrossRefGoogle Scholar
  9. Crompton, M., Hediger, M., and Carafoli, E. (1978a). Biochem. Biophys. Res. Commun. 80, 540–546. Crompton, M., Moser, R., Lüdi, H., and Carafoli, E. (1978b). Eur. J. Biochem. 82, 25–31.Google Scholar
  10. Crompton, M., Heid, I., Baschera, C., and Carafoli, E. (1979). FEBS Lett. 104, 352–354.Google Scholar
  11. Drahota, Z., Carafoli, E., Rossi, C. S., Gamble, R. L., and Lehninger, A. L. (1965). J. Biol. Chem. 240, 2712–2720.Google Scholar
  12. Fiskum, G., and Lehninger, A. L. (1979). J. Biol. Chem. 254, 6236–6239.Google Scholar
  13. Haworth, R. A., Hunter, D. R., and Berkoff, H. A. (1980). FEBS Lett. 110, 216.CrossRefGoogle Scholar
  14. Heaton, G. M., and Nicholls, D. G. (1976). Biochem. J. 156, 635–646.Google Scholar
  15. Jacobus, W. E., Tiozzo, R., Lugli, G., Lehninger, A. L., and Carafoli, E. (1975). J. Biol. Chem. 250, 78637870.Google Scholar
  16. Jeng, A. Y., Ryan, T. E., and Shamoo, A. (1978). Proc. Natl. Acad. Sci. USA 75, 2125–2130. Lehninger, A. L., Vercesi, A., and Bababunmi, E. A. (1978). Proc. Natl. Acad. Sci. USA 79, 1690–1694.Google Scholar
  17. Lötscher, H. R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1979a). Proc. Natl. Acad. Sci. USA 76,4343-4350Google Scholar
  18. Lötscher, H. R., Schwerzmann, K., and Carafoli, E. (1979b). FEBS Lett. 99, 194–198.CrossRefGoogle Scholar
  19. Lötscher, H. R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1980). J. Biol. Chem. 255, 9325–9330. Malström, K., and Carafoli, E. (1975). Arch. Biochem. Biophys. 171, 418–423.Google Scholar
  20. Moyle, J., and Mitchell, P. (1977a). FEBS Lett. 77, 136–145.Google Scholar
  21. Moyle, J., and Mitchell, P. (1977b). FEBS Lett. 73, 131–136.CrossRefGoogle Scholar
  22. Nicholls, D. G., and Brand, M. D. (1980). Biochem. J. 188, 113–118.Google Scholar
  23. Panfili, E., Sandri, G., Sottocasa, G. L., Lunazzi, G., Liut, G., and Graziosi, G. (1976). Nature (London) 264, 185–186.CrossRefGoogle Scholar
  24. Pushkin, J. S., Gunter, T. E., Gunter, K. K., and Russell, P. R. (1976). Biochemistry 15, 3834–3842. Reed, K. C., and Bygrave, F. L. (1975). Eur. J. Biochem. 55, 497–504.Google Scholar
  25. Roman, I., Gmaj, P., Nowicka, C., and Angielski, S. (1979). Eur. J. Biochem. 102, 615–623. Roos, I., Crompton, M., and Carafoli, E. (1980). Eur. J. Biochem. 110, 319–325.Google Scholar
  26. Rossi, C. S., and Lehninger, A. L. (1964). J. Biol. Chem. 239, 3971–3980.Google Scholar
  27. Rossi, C. S., Vasington, F. D., and Carafoli, E. (1973). Biochem. Biophys. Res. Commun. 50, 846–852. Rottenberg, H., and Scarpa, A. (1974). Biochemistry 13, 4811–4819.Google Scholar
  28. Siliprandi, N., Rugolo, M., Siliprandi, D., Toninello, A., and Zoccarato, F. (1979). In Function and Molecular Aspects of Biomembrane Transport (E. Quagliariello, F. Palmieri, S. Papa, and M. Klingenberg, eds.), pp. 147–155, Elsevier/North-Holland, Amsterdam.Google Scholar
  29. Siliprandi, D., Rugolo, M., Toninello, A., and Zoccarato, F. (1980). First European Bioenergetics Conference, Short Reports,pp. 299–300.Google Scholar
  30. Sordahl, L. A. (1974). Arch. Biochem. Biophys. 167, 104–115.CrossRefGoogle Scholar
  31. Sottocasa, G. L., Sandri, G., Panfili, E., De Bernard, B., Gazzotti, P., Vasington, F. D., and Carafoli, E. (1972). Biochem. Biophys. Res. Commun. 47, 808–813.Google Scholar
  32. Sottocasa, G. L., Panfili, E., Sandri, G., and Liut, G. (1980). First European Bioenergetics Conference, Short Reports,pp. 267–268.Google Scholar
  33. Stücki, J. W., and Ineichen, E. A. (1974). Eur. J. Biochem. 48, 365–375.CrossRefGoogle Scholar
  34. Wolkowicz, P. E., and McMillin-Wood, J. (1980). J. Biol. Chem. 255, 10348–10353.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  1. 1.Laboratory of BiochemistrySwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations