Advertisement

Ca2+/Mg2+-Dependent ATPase in Sarcoplasmic Reticulum

Kinetic Properties in Its Monomeric and Oligomeric Forms
  • Taibo Yamamoto
  • Yuji Tonomura

Abstract

Since Hasselbach and Makinose (1961) showed the existence of the Ca2+/Mg2+-dependent ATPase in the membrane of isolated sarcoplasmic reticulum (SR), considerable progress has been made concerning the mechanism of the active transport of Ca2+. The outline of the transport mechanism, which has been obtained mainly from kinetic studies of the Ca2+/Mg2+-dependent ATPase, is described briefly as follows: 1 mole of ATP and 2 moles of Ca2+ bind to 1 mole of the membrane-bound ATPase on the outside of the SR vesicle. The terminal phosphate of ATP is transferred to an aspartyl residue of the enzyme to form a phosphoenzyme. At the same time, Ca2+ is translocated from outside to inside the membrane. The phosphoenzyme is then hydrolyzed in the presence of Mg2+. The entire process of Ca2+ transport can be reversed. When SR vesicles loaded with Ca2+ are reacted with P i in the presence of Mg2+ and EGTA, 1 mole of phosphoenzyme is formed. When ADP is added to the phosphoenzymes, 2 moles of Ca2+ are released accompanying the formation of 1 mole of ATP. These studies have been reviewed in detail by Hasselbach (1979), Inesi (1979), Martonosi (1975), Tada et al. (1978), and Yamamoto et al. (1979).

Keywords

Sarcoplasmic Reticulum Dependent ATPase Terminal Phosphate Sarcoplasmic Reticulum Membrane Sarcoplasmic Reticulum Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G., Trinnaman, B. J., and Green, N. M. (1980). Biochem. J. 187, 591–616.Google Scholar
  2. Dean, W. L., and Tanford, C. (1978). Biochemistry 17, 1683–1690.CrossRefGoogle Scholar
  3. De Meis, L., and Vianna, A. L. (1979). Annu. Rev. Biochem. 48, 275–292.CrossRefGoogle Scholar
  4. Dupont, Y. (1978). Biochem. Biophys. Res. Commun. 82, 893–900.CrossRefGoogle Scholar
  5. Froehlich, J. P., and Taylor, E. W. (1975). J. Biol. Chem. 250, 2013–2021.Google Scholar
  6. Froehlich, J. P., and Taylor, E. W. (1976). J. Biol. Chem. 251, 2307–2315.Google Scholar
  7. Hasselbach, W. (1979). Top Curr. Chem. 78, 1–56.CrossRefGoogle Scholar
  8. Hasselbach, W., and Makinose, M. (1961). Biochem. Z. 333, 518–528.Google Scholar
  9. Hoffman, W., Sarzala, M. G., and Chapman, D. (1979). Proc. Natl. Acad. Sci. USA 76, 3860–3864. Ikemoto, N., Bhatnagar, G. M., and Gergely, J. (1971). Biochem. Biophys. Res. Commun. 44, 1510–1517.Google Scholar
  10. Inesi, G. (1979). In Membrane Transport in Biology (G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.)Google Scholar
  11. Vol. II, pp. 357–393, Springer-Verlag, Berlin.Google Scholar
  12. Jilka, R. L., Martonosi, A. N., and Tillack, T. W. (1975). J. Biol. Chem. 250, 7511–7524.Google Scholar
  13. Jorgensen, K. E., Lind, K. E., Roigaard-Petersen, H., and Moller, J. V. (1978). Biochem. J. 169, 489–498. Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y. (1971). J. Biochem. (Tokyo) 70, 95–123. Klip, A., Reithmeier, R. A. F., and MacLennan, D. H. (1980). J. Biol. Chem. 255, 6562–6568.Google Scholar
  14. LeMaire, M., Moller, J. V., and Tanford, C. (1976). Biochemistry 15, 2336–2342.CrossRefGoogle Scholar
  15. LeMaire, M., Lind, K. E., Jorgensen, K. E., Roigaard, H., and Moller, J. V. (1978). J. Biol. Chem. 253, 7051–7060.Google Scholar
  16. MacLennan, D. H. (1970). J. Biol. Chem. 245, 4508–4518.Google Scholar
  17. Martonosi, A. N. (1975). In Calcium Transport in Contraction and Secretion (E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds.), pp. 313–327, North-Holland, Amsterdam.Google Scholar
  18. Meissner, G., and Fleischer, S. (1971). Biochim. Biophys. Acta 241, 356–378.CrossRefGoogle Scholar
  19. Migala, A., Agostini, B., and Hasselbach, W. (1973). Z. Naturforsch. 28, 178–182.Google Scholar
  20. Moller, J. V., Lind, K. E., and Andersen, J. P. (1980). J. Biol. Chem. 255, 1912–1920.Google Scholar
  21. Racker, E. (1972). J. Biol. Chem. 247, 8198–8200.Google Scholar
  22. Scales, D., and Inesi, G. (1976). Biophys. J. 16, 735–751.CrossRefGoogle Scholar
  23. Shigekawa, M., Doughery, J. P., and Katz, A. M. (1978). J. Biol. Chem. 253, 1442–1450.Google Scholar
  24. Stewart, P. S., MacLennan, D. H., and Shamoo, A. E. (1976). J. Biol. Chem. 251, 712–719. Tada, M., Yamamoto, T., and Tonomura, Y. (1978). Physiol. Rev. 58, 1–79.Google Scholar
  25. Takisawa, H., and Tonomura, Y. (1978). J. Biochem. (Tokyo) 83, 1275–1284.Google Scholar
  26. Takisawa, H., and Tonomura, Y. (1979). J. Biochem. (Tokyo) 86, 425–441.Google Scholar
  27. Thorley-Lawson, D. A., and Green, N. M. (1973). Eur. J. Biochem. 40, 403–413.CrossRefGoogle Scholar
  28. Tong, S. W. (1980). Arch. Biochem. Biophys. 203, 780–791.CrossRefGoogle Scholar
  29. Vanderkooi, J. M., Ierokomas, A., Nakamura, H., and Martonosi, A. N. (1977). Biochemistry 16, 1262–1267. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. (1974a). Proc. Natl. Acad. Sci. USA 71, 622–626.Google Scholar
  30. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. (1974b). Biochemistry 13, 5501–5507.CrossRefGoogle Scholar
  31. Yamada, S., and Ikemoto, N. (1980). J. Biol. Chem. 255, 3108–3119.Google Scholar
  32. Yamada, S., Yamamoto, T., Kanazawa, T., and Tonomura, Y. (1971). J. Biochem. (Tokyo) 70, 279–291.Google Scholar
  33. Yamamoto, T., Takisawa, H., and Tonomura, Y. (1979). Curr. Top. Bioenerg. 9, 179–236.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Taibo Yamamoto
    • 1
  • Yuji Tonomura
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations